99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁精彩閱讀如何在R語言中使用SQL命令
如何在R語言中使用SQL命令
2017-03-03
收藏

如何在R語言中使用SQL命令

對于有SQL背景的R語言學(xué)習(xí)者而言,sqldf是一個非常有用的包,因為它使我們能在R中使用SQL命令。只要掌握了基本的SQL技術(shù),我們就能利用它們在R中操作數(shù)據(jù)框。關(guān)于sqldf包的更多信息,可以參看 cran 。

在這篇文章中,我們將展示如何在R中利用SQL命令來連接、檢索、排序和篩選數(shù)據(jù)。我們也將展示怎么利用R語言的函數(shù)來實現(xiàn)這些功能。最近我在處理一些FDA(譯者注:食品及藥物管理局)的不良事件數(shù)據(jù)。這些數(shù)據(jù)非常混亂:有缺失值,有重復(fù)記錄,有不同時間建立的數(shù)據(jù)集的可比性問題,不同數(shù)據(jù)集中變量名稱和數(shù)量也不統(tǒng)一(比如一個數(shù)據(jù)集里叫sex,另一個里叫g(shù)ender),還有疏忽錯誤等問題。但正因如此,這些數(shù)據(jù)對于數(shù)據(jù)科學(xué)家或者愛好者而言到是理想的練手對象。

本文使用的FDA不良事件數(shù)據(jù)可以從公開渠道獲得,csv格式的數(shù)據(jù)表可以從國家經(jīng)濟研究局下載。通過R從國家經(jīng)濟研究局的網(wǎng)站下載數(shù)據(jù)相對更容易,我建議你使用相應(yīng)的R代碼來下載并探索數(shù)據(jù)。

不良事件數(shù)據(jù)集是以季度為發(fā)布周期,每個季度的數(shù)據(jù)包括了人口信息、藥物/生物信息、不良事件詳情,結(jié)果和診斷情況等信息。

讓我們下載數(shù)據(jù)并使用SQL命令來連接、排序和篩選該數(shù)據(jù)集中包含的大量數(shù)據(jù)框。

加載R包

require(downloader)  
library(dplyr)
library(sqldf)
library(data.table)
library(ggplot2)
library(compare)
library(plotrix)

基本的錯誤處理函數(shù)tryCatch()

我們將使用這個函數(shù)來處理下載的數(shù)據(jù)。因為數(shù)據(jù)以季度頻率發(fā)布,每年都會有四個觀測值(每年有四條記錄)。運行這個函數(shù)能自動下載數(shù)據(jù),但如果某些季度數(shù)據(jù)從網(wǎng)上無法獲取(尚未公布),該函數(shù)會返回一條錯誤信息表示無法找到數(shù)據(jù)集。現(xiàn)在讓我們下載數(shù)據(jù)的壓縮包并將其解壓。

try.error = function(url)
{
  try_error = tryCatch(download(url,dest="data.zip"), error=function(e) e)
  if (!inherits(try_error, "error")){
      download(url,dest="data.zip")
        unzip ("data.zip")
      }
    else if (inherits(try_error, "error")){
    cat(url,"not found\n")
      }
      }

下載不良事件數(shù)據(jù)

我們可以得到自2004年起的FDA不良事件數(shù)據(jù)。本文將使用2013年以來公布的數(shù)據(jù),我們將檢查截至當(dāng)前時間的最新數(shù)據(jù)并下載。

> Sys.time() 函數(shù)會返回當(dāng)前的日期和時間。數(shù)據(jù)分析師培訓(xùn)

> data.table包中的year()函數(shù)會從之前返回的當(dāng)前時間中提取年份信息。

我們將下載人口、藥物、診斷/指示,結(jié)果和反應(yīng)(不良事件)數(shù)據(jù)。

year_start=2013
year_last=year(Sys.time())
for (i in year_start:year_last){
            j=c(1:4)
            for (m in j){
            url1<-paste0("http://www.nber.org/fda/faers/",i,"/demo",i,"q",m,".csv.zip")
            url2<-paste0("http://www.nber.org/fda/faers/",i,"/drug",i,"q",m,".csv.zip")
            url3<-paste0("http://www.nber.org/fda/faers/",i,"/reac",i,"q",m,".csv.zip")
            url4<-paste0("http://www.nber.org/fda/faers/",i,"/outc",i,"q",m,".csv.zip")
            url5<-paste0("http://www.nber.org/fda/faers/",i,"/indi",i,"q",m,".csv.zip")
           try.error(url1)
           try.error(url2)
           try.error(url3)
           try.error(url4)
           try.error(url5)     
            }
        }

http://www.nber.org/fda/faers/2015/demo2015q4.csv.zip not found
...
http://www.nber.org/fda/faers/2016/indi2016q4.csv.zip not found

根據(jù)上面的錯誤信息,截至成文時間(2016年3月13日),我們最多可以獲得2015年第三季度的不良事件數(shù)據(jù)。

> list.files()函數(shù)會字符串向量的形式返回當(dāng)前工作目錄下所有文件的名字。

> 我會使用正則表達式對各個數(shù)據(jù)集的類別進行篩選。比如^demo.*.csv表示所有名字以demo開頭的csv文件。

filenames <- list.files(pattern="^demo.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly demography datasets')
filenames

我們已經(jīng)下載了下列季度人口數(shù)據(jù)

"./demo2012q1.csv" "./demo2012q2.csv" "./demo2012q3.csv" "./demo2012q4.csv" "./demo2013q1.csv" "./demo2013q2.csv" "./demo2013q3.csv" "./demo2013q4.csv" "./demo2014q1.csv" "./demo2014q2.csv" "./demo2014q3.csv" "./demo2014q4.csv" "./demo2015q1.csv" "./demo2015q2.csv" "./demo2015q3.csv"

讓我們用data.table包中的fread()函數(shù)來讀入這些數(shù)據(jù)集,以人口數(shù)據(jù)為例:

demo=lapply(filenames,fread)

接著讓我們把它們轉(zhuǎn)換數(shù)據(jù)結(jié)構(gòu)并合并成一個數(shù)據(jù)框:

demo_all=do.call(rbind,lapply(1:length(demo),function(i) select(as.data.frame(demo[i]),primaryid,caseid, age,age_cod,event_dt,sex,reporter_country)))
dim(demo_all)
    3554979   7

我們看到人口數(shù)據(jù)有超過350萬行觀測(記錄)。

譯者注:下面的內(nèi)容都是重復(fù)這個流程,可以略過

現(xiàn)在讓我們合并所有的藥品數(shù)據(jù)

filenames <- list.files(pattern="^drug.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly drug datasets:\n')
filenames
drug=lapply(filenames,fread)
cat('\n')
cat('Variable names:\n')
names(drug[[1]])
drug_all=do.call(rbind,lapply(1:length(drug), function(i) select(as.data.frame(drug[i]),primaryid,caseid, drug_seq,drugname,route)))

我們已經(jīng)下載了下列季度藥品數(shù)據(jù)集

"./drug2012q1.csv" "./drug2012q2.csv" "./drug2012q3.csv" "./drug2012q4.csv" "./drug2013q1.csv" "./drug2013q2.csv" "./drug2013q3.csv" "./drug2013q4.csv" "./drug2014q1.csv" "./drug2014q2.csv" "./drug2014q3.csv" "./drug2014q4.csv" "./drug2015q1.csv" "./drug2015q2.csv" "./drug2015q3.csv"

每張表中的變量名分別為:

"primaryid" "drug_seq" "role_cod" "drugname" "val_vbm" "route" "dose_vbm" "dechal" "rechal" "lot_num" "exp_dt" "exp_dt_num" "nda_num"

合并所有的診斷/指示數(shù)據(jù)集

filenames <- list.files(pattern="^indi.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly diagnoses/indications datasets:\n')

filenames

indi=lapply(filenames,fread)

cat('\n')
cat('Variable names:\n')

names(indi[[15]])

indi_all=do.call(rbind,lapply(1:length(indi), function(i) select(as.data.frame(indi[i]),primaryid,caseid, indi_drug_seq,indi_pt)))

已經(jīng)下載的數(shù)據(jù)集為:

"./indi2012q1.csv" "./indi2012q2.csv" "./indi2012q3.csv" "./indi2012q4.csv" "./indi2013q1.csv" "./indi2013q2.csv" "./indi2013q3.csv" "./indi2013q4.csv" "./indi2014q1.csv" "./indi2014q2.csv" "./indi2014q3.csv" "./indi2014q4.csv" "./indi2015q1.csv" "./indi2015q2.csv" "./indi2015q3.csv"

變量名為:

"primaryid" "caseid" "indi_drug_seq" "indi_pt"

合并病人的結(jié)果數(shù)據(jù):

filenames <- list.files(pattern="^outc.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly patient outcome datasets:\n')

filenames
outc_all=lapply(filenames,fread)

cat('\n')
cat('Variable names\n')

names(outc_all[[1]])
names(outc_all[[4]])
colnames(outc_all[[4]])=c("primaryid", "caseid", "outc_cod")
outc_all=do.call(rbind,lapply(1:length(outc_all), function(i) select(as.data.frame(outc_all[i]),primaryid,outc_cod)))

下載的數(shù)據(jù)集如下:

"./outc2012q1.csv" "./outc2012q2.csv" "./outc2012q3.csv" "./outc2012q4.csv" "./outc2013q1.csv" "./outc2013q2.csv" "./outc2013q3.csv" "./outc2013q4.csv" "./outc2014q1.csv" "./outc2014q2.csv" "./outc2014q3.csv" "./outc2014q4.csv" "./outc2015q1.csv" "./outc2015q2.csv" "./outc2015q3.csv"

變量名:

 "primaryid" "outc_cod"
"primaryid" "caseid" "outc_code"

最后來合并反應(yīng)(不良事件)數(shù)據(jù)集(譯者注:這部分無聊地我要哭了)

filenames <- list.files(pattern="^reac.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly reaction (adverse event)  datasets:\n')

filenames
reac=lapply(filenames,fread)

cat('\n')
cat('Variable names:\n')
names(reac[[3]])

reac_all=do.call(rbind,lapply(1:length(indi), function(i) select(as.data.frame(reac[i]),primaryid,pt)))

下載的數(shù)據(jù)集有:

"./reac2012q1.csv" "./reac2012q2.csv" "./reac2012q3.csv" "./reac2012q4.csv" "./reac2013q1.csv" "./reac2013q2.csv" "./reac2013q3.csv" "./reac2013q4.csv" "./reac2014q1.csv" "./reac2014q2.csv" "./reac2014q3.csv" "./reac2014q4.csv" "./reac2015q1.csv" "./reac2015q2.csv" "./reac2015q3.csv"

變量名為:

"primaryid" "pt"

讓我們看看不同的數(shù)據(jù)類型各有多少行

all=as.data.frame(list(Demography=nrow(demo_all),Drug=nrow(drug_all),
                   Indications=nrow(indi_all),Outcomes=nrow(outc_all),
                   Reactions=nrow(reac_all)))
row.names(all)='Number of rows'
all

SQL命令=

記住sqldf包使用SQLite

COUNT

# SQL版本 sqldf("SELECT COUNT(primaryid)as 'Number of rows of Demography data' FROM demo_all;")

# R版本
nrow(demo_all)
3554979

LIMIT命令(顯示前幾行)

SQL版本
sqldf("SELECT *
FROM demo_all
LIMIT 6;")

# R版本 head(demo_all,6)

R1=head(demo_all,6)
SQL1 =sqldf("SELECT *
FROM demo_all
LIMIT 6;")
all.equal(R1,SQL1)
TRUE

*譯者注:這部分代碼驗證了SQL命令和R代碼的等價性,下同。

WHERE命令

SQL2=sqldf("SELECT * FROM demo_all WHERE sex ='F';")
R2 = filter(demo_all, sex=="F")
identical(SQL2, R2)
TRUE
SQL3=sqldf("SELECT * FROM demo_all WHERE age BETWEEN 20 AND 25;")
R3 = filter(demo_all, age >= 20 & age <= 25)
identical(SQL3, R3)
TRUE

GROUP BY 和 ORDER BY

# SQL版本
sqldf("SELECT sex, COUNT(primaryid) as Total
FROM demo_all
WHERE sex IN ('F','M','NS','UNK')
GROUP BY sex
ORDER BY Total DESC ;")

# R版本
demo_all %>% filter(sex %in%c('F','M','NS','UNK')) %>% group_by(sex) %>%
        summarise(Total = n()) %>% arrange(desc(Total))

SQL3 = sqldf("SELECT sex, COUNT(primaryid) as Total
FROM demo_all
GROUP BY sex
ORDER BY Total DESC ;")

R3 = demo_all%>%group_by(sex) %>%
        summarise(Total = n())%>%arrange(desc(Total))

compare(SQL3,R3, allowAll=TRUE)
TRUE
  dropped attributes

利用SQL命令進行數(shù)據(jù)清洗并繪制3D餅圖

SQL=sqldf("SELECT sex, COUNT(primaryid) as Total
FROM demo_all
WHERE sex IN ('F','M','NS','UNK')
GROUP BY sex
ORDER BY Total DESC ;")
SQL$Total=as.numeric(SQL$Total
pie3D(SQL$Total, labels = SQL$sex,explode=0.1,col=rainbow(4),
   main="Pie Chart of adverse event reports by gender",cex.lab=0.5, cex.axis=0.5, cex.main=1,labelcex=1)

輸出的圖如下:

Inner Join

讓我們把藥品數(shù)據(jù)和指數(shù)數(shù)據(jù)基于主id和藥品序列內(nèi)連。

首先,我們要檢查下變量名,看看如何合并兩個數(shù)據(jù)集。

names(indi_all)
names(drug_all)

    "primaryid" "indi_drug_seq" "indi_pt"
    "primaryid" "drug_seq" "drugname" "route"

names(indi_all)=c("primaryid", "drug_seq", "indi_pt" ) # 使兩個數(shù)據(jù)集變量名一致
R4= merge(drug_all,indi_all, by = intersect(names(drug_all), names(indi_all))) # R版本合并
R4=arrange(R3, primaryid,drug_seq,drugname,indi_pt) # R版本排序
SQL4= sqldf("SELECT d.primaryid as primaryid, d.drug_seq as drug_seq, d.drugname as drugname,
                       d.route as route,i.indi_pt as indi_pt
                       FROM drug_all d
                       INNER JOIN indi_all i
                      ON d.primaryid= i.primaryid AND d.drug_seq=i.drug_seq
                      ORDER BY primaryid,drug_seq,drugname, i.indi_pt") # SQL版本
compare(R4,SQL4,allowAll=TRUE)
TRUE # 兩種方法等價

R5 = merge(reac_all,outc_all,by=intersect(names(reac_all), names(outc_all)))
SQL5 =reac_outc_new4=sqldf("SELECT r.*, o.outc_cod as outc_cod
                     FROM reac_all r
                     INNER JOIN outc_all o
                     ON r.primaryid=o.primaryid
                     ORDER BY r.primaryid,r.pt,o.outc_cod")

compare(R5,SQL5,allowAll = TRUE)
TRUE
# 繪制不同性別的年齡概率分布密度圖
ggplot(sqldf('SELECT age, sex
             FROM demo_all
             WHERE age between 0 AND 100 AND sex IN ("F","M")
             LIMIT 10000;'), aes(x=age, fill = sex))+ geom_density(alpha = 0.6)

繪制出的圖如下:

繪制不同結(jié)果的年齡年齡概率分布密度圖(譯者注:后面都是結(jié)果的可視化,可略過。原作者的耐心真好。。。)

ggplot(sqldf("SELECT d.age as age, o.outc_cod as outcome
                     FROM demo_all d
                     INNER JOIN outc_all o
                     ON d.primaryid=o.primaryid
                     WHERE d.age BETWEEN 20 AND 100
                     LIMIT 20000;"),aes(x=age, fill = outcome))+ geom_density(alpha = 0.6)

輸出如下:

ggplot(sqldf("SELECT de.sex as sex, dr.route as route
                     FROM demo_all de
                     INNER JOIN drug_all dr
                     ON de.primaryid=dr.primaryid
                     WHERE de.sex IN ('M','F') AND dr.route IN ('ORAL','INTRAVENOUS','TOPICAL')
                     LIMIT 200000;"),aes(x=route, fill = sex))+ geom_bar(alpha=0.6)

輸出如下:

ggplot(sqldf("SELECT d.sex as sex, o.outc_cod as outcome
                     FROM demo_all d
                     INNER JOIN outc_all o
                     ON d.primaryid=o.primaryid
                     WHERE d.age BETWEEN 20 AND 100 AND sex IN ('F','M')
                     LIMIT 20000;"),aes(x=outcome,fill=sex))+ geom_bar(alpha = 0.6)

輸出如下(譯者注:哥們兒挺住,你就快看完了?。。。?

UNION ALL

demo1= demo_all[1:20000,]
demo2=demo_all[20001:40000,]
R6 <- rbind(demo1, demo2)
SQL6 <- sqldf("SELECT  * FROM demo1 UNION ALL SELECT * FROM demo2;")
compare(R6,SQL6, allowAll = TRUE)
TRUE
INTERSECT
R7 <- semi_join(demo1, demo2)
SQL7 <- sqldf("SELECT  * FROM demo1 INTERSECT SELECT * FROM demo2;")
compare(R7,SQL7, allowAll = TRUE)
TRUE

EXCEPT

R8 <- anti_join(demo1, demo2)
SQL8 <- sqldf("SELECT  * FROM demo1 EXCEPT SELECT * FROM demo2;")
compare(R8,SQL8, allowAll = TRUE)
TRUE

翻譯感悟:這篇文章的作者不厭其煩地演示了利用如何sqldf包在R中實現(xiàn)大部分常用的SQL命令,并將其結(jié)果和直接調(diào)用相應(yīng)的R函數(shù)的結(jié)果做了對照,證明了二者的等價性。

數(shù)據(jù)分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個參數(shù)驗證碼對象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺檢測極驗服務(wù)器是否宕機 new_captcha: data.new_captcha, // 用于宕機時表示是新驗證碼的宕機 product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計時完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }