
一、層次聚類
1)距離和相似系數(shù)
r語言中使用dist(x, method = “euclidean”,diag = FALSE, upper = FALSE, p = 2) 來計算距離。其中x是樣本矩陣或者數(shù)據(jù)框。method表示計算哪種距離。method的取值有:
euclidean 歐幾里德距離,就是平方再開方
maximum 切比雪夫距離
manhattan 絕對值距離
canberra Lance 距離
minkowski 明科夫斯基距離,使用時要指定p值
binary 定性變量距離.
定性變量距離:記m個項目里面的 0:0配對數(shù)為m0 ,1:1配對數(shù)為m1,不能配對數(shù)為m2,距離=m1/(m1+m2);
diag 為TRUE的時候給出對角線上的距離。upper為TURE的時候給出上三角矩陣上的值。
r語言中使用scale(x, center = TRUE, scale = TRUE) 對數(shù)據(jù)矩陣做中心化和標準化變換。
如只中心化 scale(x,scale=F) ,
r語言中使用sweep(x, MARGIN, STATS, FUN=”-“, …) 對矩陣進行運算。MARGIN為1,表示行的方向上進行運算,為2表示列的方向上運算。STATS是運算的參數(shù)。FUN為運算函數(shù),默認是減法。下面利用sweep對矩陣x進行極差標準化變換
有時候我們不是對樣本進行分類,而是對變量進行分類。這時候,我們不計算距離,而是計算變量間的相似系數(shù)。常用的有夾角和相關(guān)系數(shù)。
r語言計算兩向量的夾角余弦:
相關(guān)系數(shù)用cor函數(shù)
2)層次聚類法
層次聚類法。先計算樣本之間的距離。每次將距離最近的點合并到同一個類。然后,再計算類與類之間的距離,將距離最近的類合并為一個大類。不停的合并,直到合成了一個類。其中類與類的距離的計算方法有:最短距離法,最長距離法,中間距離法,類平均法等。比如最短距離法,將類與類的距離定義為類與類之間樣本的最段距離。。。
r語言中使用hclust(d, method = “complete”, members=NULL) 來進行層次聚類。
其中d為距離矩陣。
method表示類的合并方法,有:
single 最短距離法
complete 最長距離法
median 中間距離法
mcquitty 相似法
average 類平均法
centroid 重心法
ward 離差平方和法
然后可以用rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,border = 2, cluster = NULL)來確定類的個數(shù)。 tree就是求出來的對象。k為分類的個數(shù),h為類間距離的閾值。border是畫出來的顏色,用來分類的。
二、動態(tài)聚類k-means
層次聚類,在類形成之后就不再改變。而且數(shù)據(jù)比較大的時候更占內(nèi)存。
動態(tài)聚類,先抽幾個點,把周圍的點聚集起來。然后算每個類的重心或平均值什么的,以算出來的結(jié)果為分類點,不斷的重復(fù)。直到分類的結(jié)果收斂為止。r語言中主要使用kmeans(x, centers, iter.max = 10, nstart = 1,algorithm =c(“Hartigan-Wong”, “Lloyd”,”Forgy”, “MacQueen”))來進行聚類。centers是初始類的個數(shù)或者初始類的中心。iter.max是最大迭代次數(shù)。nstart是當(dāng)centers是數(shù)字的時候,隨機集合的個數(shù)。algorithm是算法,默認是第一個。
使用knn包進行Kmean聚類分析
將數(shù)據(jù)集進行備份,將列newiris$Species置為空,將此數(shù)據(jù)集作為測試數(shù)據(jù)集
> newiris <- iris
> newiris$Species <- NULL
在數(shù)據(jù)集newiris上運行Kmean聚類分析, 將聚類結(jié)果保存在kc中。在kmean函數(shù)中,將需要生成聚類數(shù)設(shè)置為3
> (kc <- kmeans(newiris, 3))
K-means clustering with 3 clusters of sizes 38, 50, 62: K-means算法產(chǎn)生了3個聚類,大小分別為38,50,62.
Cluster means: 每個聚類中各個列值生成的最終平均值
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.006000 3.428000 1.462000 0.246000
2 5.901613 2.748387 4.393548 1.433871
3 6.850000 3.073684 5.742105 2.071053
Clustering vector: 每行記錄所屬的聚類(2代表屬于第二個聚類,1代表屬于第一個聚類,3代表屬于第三個聚類)
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[37] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[73] 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3
[109] 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3
[145] 3 3 2 3 3 2
Within cluster sum of squares by cluster: 每個聚類內(nèi)部的距離平方和
[1] 15.15100 39.82097 23.87947
(between_SS / total_SS = 88.4 %) 組間的距離平方和占了整體距離平方和的的88.4%,也就是說各個聚類間的距離做到了最大
Available components: 運行kmeans函數(shù)返回的對象所包含的各個組成部分
[1] “cluster” “centers” “totss” “withinss”
[5] “tot.withinss” “betweenss” “size”
(“cluster”是一個整數(shù)向量,用于表示記錄所屬的聚類
“centers”是一個矩陣,表示每聚類中各個變量的中心點
“totss”表示所生成聚類的總體距離平方和
“withinss”表示各個聚類組內(nèi)的距離平方和
“tot.withinss”表示聚類組內(nèi)的距離平方和總量
“size”表示每個聚類組中成員的數(shù)量)
創(chuàng)建一個連續(xù)表,在三個聚類中分別統(tǒng)計各種花出現(xiàn)的次數(shù)
> table(iris$Species, kc$cluster)
1 2 3
setosa 0 50 0
versicolor 2 0 48
virginica 36 0 14
根據(jù)最后的聚類結(jié)果畫出散點圖,數(shù)據(jù)為結(jié)果集中的列”Sepal.Length”和”Sepal.Width”,顏色為用1,2,3表示的缺省顏色
> plot(newiris[c(“Sepal.Length”, “Sepal.Width”)], col = kc$cluster)
在圖上標出每個聚類的中心點
〉points(kc$centers[,c(“Sepal.Length”, “Sepal.Width”)], col = 1:3, pch = 8, cex=2)
三、DBSCAN
動態(tài)聚類往往聚出來的類有點圓形或者橢圓形?;诿芏葤呙璧乃惴軌蚪鉀Q這個問題。思路就是定一個距離半徑,定最少有多少個點,然后把可以到達的點都連起來,判定為同類。在r中的實現(xiàn)
其中eps是距離的半徑,minpts是最少多少個點。 scale是否標準化(我猜) ,method 有三個值raw,dist,hybird,分別表示,數(shù)據(jù)是原始數(shù)據(jù)避免計算距離矩陣,數(shù)據(jù)就是距離矩陣,數(shù)據(jù)是原始數(shù)據(jù)但計算部分距離矩陣。showplot畫不畫圖,0不畫,1和2都畫。countmode,可以填個向量,用來顯示計算進度。用鳶尾花試一試
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03