
聚類分析案例之市場細(xì)分
從實(shí)際應(yīng)用的角度看,聚類分析是數(shù)據(jù)挖掘的主要任務(wù)之一。而且聚類能夠作為一個(gè)獨(dú)立的工具獲得數(shù)據(jù)的分布狀況,觀察每一簇?cái)?shù)據(jù)的特征,集中對(duì)特定的聚簇集合作進(jìn)一步地分析。
聚類是將數(shù)據(jù)分類到不同的類或者簇這樣的一個(gè)過程,所以同一個(gè)簇中的對(duì)象有很大的相似性,而不同簇間的對(duì)象有很大的相異性。
從統(tǒng)計(jì)學(xué)的觀點(diǎn)看,聚類分析是通過數(shù)據(jù)建模簡化數(shù)據(jù)的一種方法。傳統(tǒng)的統(tǒng)計(jì)聚類分析方法包括系統(tǒng)聚類法、分解法、加入法、動(dòng)態(tài)聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。
從機(jī)器學(xué)習(xí)的角度講,簇相當(dāng)于隱藏模式。聚類是搜索簇的無監(jiān)督學(xué)習(xí)過程。與分類不同,無監(jiān)督學(xué)習(xí)不依賴預(yù)先定義的類或帶類標(biāo)記的訓(xùn)練實(shí)例,需要由聚類學(xué)習(xí)算法自動(dòng)確定標(biāo)記,而分類學(xué)習(xí)的實(shí)例或數(shù)據(jù)對(duì)象有類別標(biāo)記。聚類是觀察式學(xué)習(xí),而不是示例式的學(xué)習(xí)。
從實(shí)際應(yīng)用的角度看,聚類分析是數(shù)據(jù)挖掘的主要任務(wù)之一。而且聚類能夠作為一個(gè)獨(dú)立的工具獲得數(shù)據(jù)的分布狀況,觀察每一簇?cái)?shù)據(jù)的特征,集中對(duì)特定的聚簇集合作進(jìn)一步地分析。聚類分析還可以作為其他算法(如分類和定性歸納算法)的預(yù)處理步驟。
聚類分析的核心思想就是物以類聚,人以群分。在市場細(xì)分領(lǐng)域,消費(fèi)同一種類的商品或服務(wù)時(shí),不同的客戶有不同的消費(fèi)特點(diǎn),通過研究這些特點(diǎn),企業(yè)可以制定出不同的營銷組合,從而獲取最大的消費(fèi)者剩余,這就是客戶細(xì)分的主要目的。在銷售片區(qū)劃分中,只有合理地將企業(yè)所擁有的子市場歸成幾個(gè)大的片區(qū),才能有效地制定符合片區(qū)特點(diǎn)的市場營銷戰(zhàn)略和策略。金融領(lǐng)域,對(duì)基金或者股票進(jìn)行分類,以選擇分類投資風(fēng)險(xiǎn)。
下面以一個(gè)汽車銷售的案例來介紹聚類分析在市場細(xì)分中的應(yīng)用。
聚類是將數(shù)據(jù)分類到不同的類或者簇這樣的一個(gè)過程,所以同一個(gè)簇中的對(duì)象有很大的相似性,而不同簇間的對(duì)象有很大的相異性。
從統(tǒng)計(jì)學(xué)的觀點(diǎn)看,聚類分析是通過數(shù)據(jù)建模簡化數(shù)據(jù)的一種方法。傳統(tǒng)的統(tǒng)計(jì)聚類分析方法包括系統(tǒng)聚類法、分解法、加入法、動(dòng)態(tài)聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。
從機(jī)器學(xué)習(xí)的角度講,簇相當(dāng)于隱藏模式。聚類是搜索簇的無監(jiān)督學(xué)習(xí)過程。與分類不同,無監(jiān)督學(xué)習(xí)不依賴預(yù)先定義的類或帶類標(biāo)記的訓(xùn)練實(shí)例,需要由聚類學(xué)習(xí)算法自動(dòng)確定標(biāo)記,而分類學(xué)習(xí)的實(shí)例或數(shù)據(jù)對(duì)象有類別標(biāo)記。聚類是觀察式學(xué)習(xí),而不是示例式的學(xué)習(xí)。
從實(shí)際應(yīng)用的角度看,聚類分析是數(shù)據(jù)挖掘的主要任務(wù)之一。而且聚類能夠作為一個(gè)獨(dú)立的工具獲得數(shù)據(jù)的分布狀況,觀察每一簇?cái)?shù)據(jù)的特征,集中對(duì)特定的聚簇集合作進(jìn)一步地分析。聚類分析還可以作為其他算法(如分類和定性歸納算法)的預(yù)處理步驟。
聚類分析的核心思想就是物以類聚,人以群分。在市場細(xì)分領(lǐng)域,消費(fèi)同一種類的商品或服務(wù)時(shí),不同的客戶有不同的消費(fèi)特點(diǎn),通過研究這些特點(diǎn),企業(yè)可以制定出不同的營銷組合,從而獲取最大的消費(fèi)者剩余,這就是客戶細(xì)分的主要目的。在銷售片區(qū)劃分中,只有合理地將企業(yè)所擁有的子市場歸成幾個(gè)大的片區(qū),才能有效地制定符合片區(qū)特點(diǎn)的市場營銷戰(zhàn)略和策略。金融領(lǐng)域,對(duì)基金或者股票進(jìn)行分類,以選擇分類投資風(fēng)險(xiǎn)。
下面以一個(gè)汽車銷售的案例來介紹聚類分析在市場細(xì)分中的應(yīng)用。
商業(yè)目標(biāo)
業(yè)務(wù)理解:數(shù)據(jù)名稱《汽車銷售.csv》。該案例所用的數(shù)據(jù)是一份關(guān)于汽車的數(shù)據(jù),該數(shù)據(jù)文件包含銷售值、訂價(jià)以及各種品牌和型號(hào)的車輛的物理規(guī)格。訂價(jià)和物理規(guī)格可以從 edmunds.com 和制造商處獲得。定價(jià)為美國本土售價(jià)。如下:
表1:數(shù)據(jù)視圖
業(yè)務(wù)目標(biāo):對(duì)市場進(jìn)行準(zhǔn)確定位,為汽車的設(shè)計(jì)和市場份額預(yù)測(cè)提供參考。
數(shù)據(jù)挖掘目標(biāo):通過聚類的方式對(duì)現(xiàn)有的車型進(jìn)行分類。
數(shù)據(jù)準(zhǔn)備
通過數(shù)據(jù)探索對(duì)數(shù)據(jù)的質(zhì)量和字段的分布進(jìn)行了解,并排除有問題的行或者列優(yōu)化數(shù)據(jù)質(zhì)量。
第一步,我們使用統(tǒng)計(jì)節(jié)點(diǎn)審核數(shù)據(jù)的質(zhì)量,從審核結(jié)果中我們發(fā)現(xiàn)存在缺失的數(shù)據(jù),如下圖所示:
第二步,對(duì)缺失的數(shù)據(jù)進(jìn)行處理,我們選擇使用缺失填充節(jié)點(diǎn)刪除這些記錄。配置如下:
建模
我們選擇層次聚類進(jìn)行分析,嘗試根據(jù)各種汽車的銷售量、價(jià)格、引擎、馬力、軸距、車寬、車長、制動(dòng)、排量、油耗等指標(biāo)對(duì)其分類。
因?yàn)閷哟?a href='/map/julei/' style='color:#000;font-size:inherit;'>聚類不能自動(dòng)確定分類數(shù)量,因此需要我們以自定義的方式規(guī)定最后聚類的類別數(shù)。層次聚類節(jié)點(diǎn)配置如下(默認(rèn)配置):
可以使用交互表或者右擊層次聚類節(jié)點(diǎn)查看聚類的結(jié)果,如下圖所示:
再使用餅圖查看每個(gè)類的大小,結(jié)果如下:
從圖中可見,分成的三個(gè)類樣本數(shù)差異太大,cluster_0和cluster_1包含的樣本數(shù)都只有1,這樣的分類是沒有意義的,因此需要重新分類。我們嘗試在層次聚類節(jié)點(diǎn)的配置中指定新的聚類方法:完全。新的聚類樣本數(shù)分布如下:
cluster_0、 cluster_1、cluster_2的樣本數(shù)分別為:50、9、93。
執(zhí)行后輸出樹狀/冰柱圖,可以從上往下看,一開始是一大類,往下走就分成了兩類,越往下分的類越多,最后細(xì)分到每一個(gè)記錄是一類,如下所示:
我們可以再使用條形圖查看每類的銷售量、平均價(jià)格,如下圖所示:
每類總銷量分布圖
每類平均銷量分布圖
每類平均價(jià)格分布圖
我們?cè)倏匆幌旅款惖匿N售額分布情況。首先,我們需要使用Java代碼段節(jié)點(diǎn)或者派生節(jié)點(diǎn)生成銷售額字段,配置如下:
再使用餅圖查看銷售額分布情況,cluster_0、 cluster_1、cluster_2的市場份額分別為:32.39%、0.53%和67.08%,如下圖所示:
案例小結(jié)
通過這個(gè)案例,大家可以發(fā)現(xiàn)聚類分析確實(shí)很簡單。進(jìn)行聚類計(jì)算后,主要通過圖形化探索的方式評(píng)估聚類合理性,以及在確定聚類后,分析每類的特征。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10