
聚類分析案例之市場細(xì)分
從實際應(yīng)用的角度看,聚類分析是數(shù)據(jù)挖掘的主要任務(wù)之一。而且聚類能夠作為一個獨立的工具獲得數(shù)據(jù)的分布狀況,觀察每一簇數(shù)據(jù)的特征,集中對特定的聚簇集合作進(jìn)一步地分析。
聚類是將數(shù)據(jù)分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。
從統(tǒng)計學(xué)的觀點看,聚類分析是通過數(shù)據(jù)建模簡化數(shù)據(jù)的一種方法。傳統(tǒng)的統(tǒng)計聚類分析方法包括系統(tǒng)聚類法、分解法、加入法、動態(tài)聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。
從機(jī)器學(xué)習(xí)的角度講,簇相當(dāng)于隱藏模式。聚類是搜索簇的無監(jiān)督學(xué)習(xí)過程。與分類不同,無監(jiān)督學(xué)習(xí)不依賴預(yù)先定義的類或帶類標(biāo)記的訓(xùn)練實例,需要由聚類學(xué)習(xí)算法自動確定標(biāo)記,而分類學(xué)習(xí)的實例或數(shù)據(jù)對象有類別標(biāo)記。聚類是觀察式學(xué)習(xí),而不是示例式的學(xué)習(xí)。
從實際應(yīng)用的角度看,聚類分析是數(shù)據(jù)挖掘的主要任務(wù)之一。而且聚類能夠作為一個獨立的工具獲得數(shù)據(jù)的分布狀況,觀察每一簇數(shù)據(jù)的特征,集中對特定的聚簇集合作進(jìn)一步地分析。聚類分析還可以作為其他算法(如分類和定性歸納算法)的預(yù)處理步驟。
聚類分析的核心思想就是物以類聚,人以群分。在市場細(xì)分領(lǐng)域,消費同一種類的商品或服務(wù)時,不同的客戶有不同的消費特點,通過研究這些特點,企業(yè)可以制定出不同的營銷組合,從而獲取最大的消費者剩余,這就是客戶細(xì)分的主要目的。在銷售片區(qū)劃分中,只有合理地將企業(yè)所擁有的子市場歸成幾個大的片區(qū),才能有效地制定符合片區(qū)特點的市場營銷戰(zhàn)略和策略。金融領(lǐng)域,對基金或者股票進(jìn)行分類,以選擇分類投資風(fēng)險。
下面以一個汽車銷售的案例來介紹聚類分析在市場細(xì)分中的應(yīng)用。
聚類是將數(shù)據(jù)分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。
從統(tǒng)計學(xué)的觀點看,聚類分析是通過數(shù)據(jù)建模簡化數(shù)據(jù)的一種方法。傳統(tǒng)的統(tǒng)計聚類分析方法包括系統(tǒng)聚類法、分解法、加入法、動態(tài)聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。
從機(jī)器學(xué)習(xí)的角度講,簇相當(dāng)于隱藏模式。聚類是搜索簇的無監(jiān)督學(xué)習(xí)過程。與分類不同,無監(jiān)督學(xué)習(xí)不依賴預(yù)先定義的類或帶類標(biāo)記的訓(xùn)練實例,需要由聚類學(xué)習(xí)算法自動確定標(biāo)記,而分類學(xué)習(xí)的實例或數(shù)據(jù)對象有類別標(biāo)記。聚類是觀察式學(xué)習(xí),而不是示例式的學(xué)習(xí)。
從實際應(yīng)用的角度看,聚類分析是數(shù)據(jù)挖掘的主要任務(wù)之一。而且聚類能夠作為一個獨立的工具獲得數(shù)據(jù)的分布狀況,觀察每一簇數(shù)據(jù)的特征,集中對特定的聚簇集合作進(jìn)一步地分析。聚類分析還可以作為其他算法(如分類和定性歸納算法)的預(yù)處理步驟。
聚類分析的核心思想就是物以類聚,人以群分。在市場細(xì)分領(lǐng)域,消費同一種類的商品或服務(wù)時,不同的客戶有不同的消費特點,通過研究這些特點,企業(yè)可以制定出不同的營銷組合,從而獲取最大的消費者剩余,這就是客戶細(xì)分的主要目的。在銷售片區(qū)劃分中,只有合理地將企業(yè)所擁有的子市場歸成幾個大的片區(qū),才能有效地制定符合片區(qū)特點的市場營銷戰(zhàn)略和策略。金融領(lǐng)域,對基金或者股票進(jìn)行分類,以選擇分類投資風(fēng)險。
下面以一個汽車銷售的案例來介紹聚類分析在市場細(xì)分中的應(yīng)用。
商業(yè)目標(biāo)
業(yè)務(wù)理解:數(shù)據(jù)名稱《汽車銷售.csv》。該案例所用的數(shù)據(jù)是一份關(guān)于汽車的數(shù)據(jù),該數(shù)據(jù)文件包含銷售值、訂價以及各種品牌和型號的車輛的物理規(guī)格。訂價和物理規(guī)格可以從 edmunds.com 和制造商處獲得。定價為美國本土售價。如下:
表1:數(shù)據(jù)視圖
業(yè)務(wù)目標(biāo):對市場進(jìn)行準(zhǔn)確定位,為汽車的設(shè)計和市場份額預(yù)測提供參考。
數(shù)據(jù)挖掘目標(biāo):通過聚類的方式對現(xiàn)有的車型進(jìn)行分類。
數(shù)據(jù)準(zhǔn)備
通過數(shù)據(jù)探索對數(shù)據(jù)的質(zhì)量和字段的分布進(jìn)行了解,并排除有問題的行或者列優(yōu)化數(shù)據(jù)質(zhì)量。
第一步,我們使用統(tǒng)計節(jié)點審核數(shù)據(jù)的質(zhì)量,從審核結(jié)果中我們發(fā)現(xiàn)存在缺失的數(shù)據(jù),如下圖所示:
第二步,對缺失的數(shù)據(jù)進(jìn)行處理,我們選擇使用缺失填充節(jié)點刪除這些記錄。配置如下:
建模
我們選擇層次聚類進(jìn)行分析,嘗試根據(jù)各種汽車的銷售量、價格、引擎、馬力、軸距、車寬、車長、制動、排量、油耗等指標(biāo)對其分類。
因為層次聚類不能自動確定分類數(shù)量,因此需要我們以自定義的方式規(guī)定最后聚類的類別數(shù)。層次聚類節(jié)點配置如下(默認(rèn)配置):
可以使用交互表或者右擊層次聚類節(jié)點查看聚類的結(jié)果,如下圖所示:
再使用餅圖查看每個類的大小,結(jié)果如下:
從圖中可見,分成的三個類樣本數(shù)差異太大,cluster_0和cluster_1包含的樣本數(shù)都只有1,這樣的分類是沒有意義的,因此需要重新分類。我們嘗試在層次聚類節(jié)點的配置中指定新的聚類方法:完全。新的聚類樣本數(shù)分布如下:
cluster_0、 cluster_1、cluster_2的樣本數(shù)分別為:50、9、93。
執(zhí)行后輸出樹狀/冰柱圖,可以從上往下看,一開始是一大類,往下走就分成了兩類,越往下分的類越多,最后細(xì)分到每一個記錄是一類,如下所示:
我們可以再使用條形圖查看每類的銷售量、平均價格,如下圖所示:
每類總銷量分布圖
每類平均銷量分布圖
每類平均價格分布圖
我們再看一下每類的銷售額分布情況。首先,我們需要使用Java代碼段節(jié)點或者派生節(jié)點生成銷售額字段,配置如下:
再使用餅圖查看銷售額分布情況,cluster_0、 cluster_1、cluster_2的市場份額分別為:32.39%、0.53%和67.08%,如下圖所示:
案例小結(jié)
通過這個案例,大家可以發(fā)現(xiàn)聚類分析確實很簡單。進(jìn)行聚類計算后,主要通過圖形化探索的方式評估聚類合理性,以及在確定聚類后,分析每類的特征。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03