
從大數(shù)據(jù)崛起看大數(shù)據(jù)應(yīng)用發(fā)展方向
時(shí)至今日,我們的數(shù)據(jù)管理能力日益提升,但數(shù)據(jù)分析能力則相對(duì)落后。盡管工具與流程皆已齊備,但仍然缺少充足的數(shù)據(jù)科學(xué)家人員。根據(jù)2012年《福布斯》雜志發(fā)表的文章,早期大數(shù)據(jù)技術(shù)采納方主要來(lái)自金融服務(wù)、電信、制造(特別是消費(fèi)級(jí)產(chǎn)品)以及政府領(lǐng)域。
從大數(shù)據(jù)崛起看大數(shù)據(jù)應(yīng)用發(fā)展方向
早期采納方在起步階段會(huì)使用其新近安裝的大數(shù)據(jù)基礎(chǔ)設(shè)施(例如HDFS、MapReduce以及NoSQL數(shù)據(jù)庫(kù)等等)以實(shí)驗(yàn)各類新型應(yīng)用。根據(jù)PacificCrest公司收集到的數(shù)據(jù),各早期采納方往往希望利用這些方案處理數(shù)據(jù)中心日志信息(包括服務(wù)器、路由器以及各類物聯(lián)網(wǎng)傳感器等),旨在實(shí)現(xiàn)網(wǎng)絡(luò)分析與IT系統(tǒng)性能監(jiān)控。在此基礎(chǔ)之上,亦有相當(dāng)一部分企業(yè)嘗試?yán)么髷?shù)據(jù)技術(shù)進(jìn)行財(cái)務(wù)數(shù)據(jù)(欺詐檢測(cè))與Web數(shù)據(jù)(情感分析以實(shí)現(xiàn)個(gè)性化體驗(yàn))分析。
初步實(shí)驗(yàn)對(duì)于了解大數(shù)據(jù)基礎(chǔ)設(shè)施收益、潛力與不足之處非常重要。然而根據(jù)CapGemini于2014年發(fā)布的報(bào)告,試水性實(shí)驗(yàn)的成功比例并不算高。其失敗原因主要有三:1)將數(shù)據(jù)分散在多個(gè)不同團(tuán)隊(duì)中,因此訪問(wèn)難度較原始設(shè)計(jì)更高。2)數(shù)據(jù)被安置于遺留系統(tǒng)當(dāng)中,導(dǎo)致將其導(dǎo)出至大數(shù)據(jù)基礎(chǔ)設(shè)施變得非常困難。3)缺少統(tǒng)一而明確的全局性數(shù)據(jù)管理與數(shù)據(jù)分析方案,這使得工作人員難以從數(shù)據(jù)內(nèi)提取信息。而隨著此類問(wèn)題的一一克服,近來(lái)我們發(fā)現(xiàn)成功案例變得愈發(fā)普遍。事實(shí)上,目前全球各地對(duì)于大數(shù)據(jù)基礎(chǔ)設(shè)施及其附加方案的興趣都呈現(xiàn)出快速升溫之勢(shì)。
企業(yè)向大數(shù)據(jù)技術(shù)投入的資金呈現(xiàn)增長(zhǎng)之勢(shì)。根據(jù)NewVantage指出,受訪企業(yè)中有27%表示其將在2017年之前向大數(shù)據(jù)項(xiàng)目投入超過(guò)5000萬(wàn)美元資金。而在2014年面向同樣企業(yè)對(duì)象的調(diào)查中,這一比例僅為5.4%。
目前,價(jià)值萬(wàn)億美元的行業(yè),包括醫(yī)療衛(wèi)生、保險(xiǎn)、農(nóng)業(yè)、能源、醫(yī)藥、教育、汽車、運(yùn)輸以及物流等等,都在積極探索如何利用大數(shù)據(jù)利器解決自己面臨的現(xiàn)實(shí)難題。舉例來(lái)說(shuō),汽車制造商希望分析消費(fèi)者的信息娛樂(lè)選擇以提供更理想的車載信息娛樂(lè)體驗(yàn),同時(shí)亦需要分析車輛性能數(shù)據(jù)以提供預(yù)防性維護(hù)建議。另外,無(wú)線運(yùn)營(yíng)商也希望了解消費(fèi)者如何使用其數(shù)據(jù),從而更好地提供內(nèi)容并實(shí)現(xiàn)營(yíng)收。
考慮到以上提到的企業(yè)投資與變革力度,風(fēng)險(xiǎn)投資商們則更為積極地為大數(shù)據(jù)初創(chuàng)企業(yè)提供資金。單在2015年年內(nèi),風(fēng)投方為大數(shù)據(jù)初創(chuàng)企業(yè)提供的資金總額就高達(dá)67億美元,超過(guò)2014年的60億美元。
出于同樣的理由,大數(shù)據(jù)初創(chuàng)企業(yè)也開始迎來(lái)一波收購(gòu)浪潮。其中包括AOL收購(gòu)Convertro,谷歌收購(gòu)Adometry,蘋果收購(gòu)Topsy,Teradata收購(gòu)AsterData與ThinkBigAnalytics,Salesforce收購(gòu)Edgespring等等。最近,我們還見(jiàn)證了微軟收購(gòu)RevolutionAnalytics,HDS收購(gòu)Pentaho以及Advance收購(gòu)1010Data。除此之外,小規(guī)模收購(gòu)亦層出不窮,包括Amazon收購(gòu)Amiato等。
目前風(fēng)投方的主要關(guān)注重點(diǎn)在于大數(shù)據(jù)基礎(chǔ)設(shè)施與工具。盡管基礎(chǔ)設(shè)施與工具部署同樣顯示出旺盛的生命力,但這里我們姑且將注意力集中在大數(shù)據(jù)應(yīng)用身上。
信息技術(shù)中的每個(gè)新興領(lǐng)域(例如商務(wù)智能、客戶端/服務(wù)器計(jì)算、云計(jì)算以及移動(dòng)計(jì)算等)通常都需要經(jīng)歷三個(gè)發(fā)展階段:基礎(chǔ)設(shè)施部署。在大數(shù)據(jù)領(lǐng)域,此類基礎(chǔ)設(shè)施負(fù)責(zé)對(duì)數(shù)據(jù)進(jìn)行存儲(chǔ)、管理、移動(dòng)與傳輸。工具部署。在大數(shù)據(jù)領(lǐng)域,此類工具用于搜索并分析各種形式的大數(shù)據(jù)并呈現(xiàn)處理結(jié)果。應(yīng)用程序引入,通常將基礎(chǔ)設(shè)施與工具轉(zhuǎn)化為實(shí)際功能。遵循這樣的分階段實(shí)現(xiàn)方式,眾多大型企業(yè)已經(jīng)開始部署大數(shù)據(jù)基礎(chǔ)設(shè)施與多種工具,旨在分析收集到的海量數(shù)據(jù)。
由于我們已經(jīng)進(jìn)入應(yīng)用開發(fā)與部署階段,因此最重要的是著眼于具體軟件。截至目前,我們已經(jīng)發(fā)現(xiàn)了三種主要大數(shù)據(jù)應(yīng)用類型:
淺層應(yīng)用,包括執(zhí)行客戶流失分析并圍繞通用型分析工具進(jìn)行開發(fā)(例如Dataminr與DataRobot等)。這些應(yīng)用由數(shù)據(jù)科學(xué)家負(fù)責(zé)支持,從而執(zhí)行經(jīng)過(guò)嚴(yán)格定義的任務(wù)流程。這些應(yīng)用通常只能在運(yùn)行基礎(chǔ)之上提供淺層分析能力。這些由分析模型與報(bào)告機(jī)制驅(qū)動(dòng)的應(yīng)用由數(shù)據(jù)科學(xué)家及服務(wù)專家進(jìn)行開發(fā)與維護(hù)――他們往往來(lái)自管理咨詢企業(yè),且充分理解相關(guān)業(yè)務(wù)領(lǐng)域及最終用戶需求。最終用戶通常為商業(yè)分析師。
應(yīng)用能夠處理大數(shù)據(jù),但無(wú)法實(shí)現(xiàn)任何形式的預(yù)測(cè)或預(yù)測(cè)性分析(例如Socrata及Zuora)。這類應(yīng)用可能面向水平或垂直體系,其能夠?yàn)樽罱K用戶――主要為商業(yè)分析師――提供理解數(shù)據(jù)并形成結(jié)論報(bào)告的能力。作為實(shí)例,紐約市就利用Socrata系統(tǒng)創(chuàng)建財(cái)務(wù)報(bào)告。
具備嵌入式預(yù)測(cè)性分析的應(yīng)用。此類應(yīng)用未來(lái)將分為以下兩種類別。包含預(yù)測(cè)模型,并由數(shù)據(jù)科學(xué)家負(fù)責(zé)開發(fā)與定期更新。這意味著應(yīng)用供應(yīng)商必須擁有強(qiáng)大的服務(wù)能力以支持軟件功能。此類應(yīng)用包括AgileOne、OPower、ZephyrHealth、Duetto以及DataXu與MediaMath等在線廣告應(yīng)用方案。
所使用的預(yù)測(cè)模型可由應(yīng)用本身自動(dòng)構(gòu)建。此類應(yīng)用廠商包括Oration與Namogoo。歸屬于這一類別的應(yīng)用可能面向橫向(例如AgileOne與Namogoo)或垂直領(lǐng)域(例如OPower、Duetto或者Oration)。
這三種大數(shù)據(jù)應(yīng)用類型可被視為應(yīng)用領(lǐng)域的開創(chuàng)者,如今以其為基礎(chǔ)又有第四種見(jiàn)解型應(yīng)用開始出現(xiàn)。之前提到的第三種應(yīng)用同見(jiàn)解型應(yīng)用最為接近,但二者間又存在著重要差異:其能夠做出預(yù)測(cè),但無(wú)法形成見(jiàn)解。換言之,第三種應(yīng)用無(wú)法根據(jù)預(yù)測(cè)結(jié)果執(zhí)行對(duì)應(yīng)操作。相反,它們依賴于用戶來(lái)識(shí)別特定預(yù)測(cè)結(jié)果并執(zhí)行對(duì)應(yīng)行為。
總結(jié)
盡管仍然面臨多種障礙(每一種新興技術(shù)在出現(xiàn)后都必須面對(duì)挑戰(zhàn)),但大數(shù)據(jù)的早期采納方已經(jīng)在相關(guān)項(xiàng)目當(dāng)中積極投資,并將其部署至企業(yè)業(yè)務(wù)系統(tǒng)當(dāng)中以解決各類關(guān)鍵性難題。為了實(shí)現(xiàn)大數(shù)據(jù)的跨行業(yè)處理潛能,各風(fēng)險(xiǎn)投資方都在積極為大數(shù)據(jù)初創(chuàng)企業(yè)提供援助,希望其解決方案能夠?yàn)榇笮推髽I(yè)客戶所采納。
考慮到已經(jīng)陸續(xù)出現(xiàn)的大量大數(shù)據(jù)基礎(chǔ)架構(gòu)及部署分析工具,多數(shù)企業(yè)開始將注意力轉(zhuǎn)向大數(shù)據(jù)應(yīng)用程序。我們確定的這三種具體類型涵蓋了相繼出現(xiàn)的各類新型大數(shù)據(jù)應(yīng)用。其中一些能夠提供預(yù)測(cè)結(jié)論,但卻無(wú)法實(shí)現(xiàn)見(jiàn)解與實(shí)際行動(dòng),這亦是大數(shù)據(jù)應(yīng)用尚未徹底發(fā)展成熟的主要標(biāo)志。在未來(lái)的文章中,我們將深入探討見(jiàn)解型應(yīng)用――即第四類亦是最具發(fā)展前途的大數(shù)據(jù)應(yīng)用類型。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03