
解析車輛大數(shù)據(jù)對智能交通發(fā)展的影響
隨著經(jīng)濟快速發(fā)展,城市機動車保有量持續(xù)增加,不僅加大了交通管理的難度,而且涉車涉駕的案件比例也不斷上升,特別是盜搶機動車輛、機動車肇事逃逸以及涉車類刑事案件,嚴重影響了社會治安狀況,損害了人民群眾利益。而隨著平安城市建設(shè)的擴大深入和資源整合,公安通過自建卡口電警系統(tǒng)加強了車輛管控,掌握了大量的車輛卡口數(shù)據(jù)和圖片。
解析車輛大數(shù)據(jù)對智能交通發(fā)展的影響
過車信息的爆發(fā)式增長得益于三個方面:
一、按照中共中央辦公廳和國務(wù)院辦公廳印發(fā)《關(guān)于加強社會治安防控體系建設(shè)的意見》關(guān)于各地加快公共安全視頻監(jiān)控系統(tǒng)建設(shè),全面提高社會治安防控體系的科技化水平要求,前端車輛抓拍點位的建設(shè)規(guī)劃質(zhì)量、成像效果等直接影響車輛大數(shù)據(jù)研判系統(tǒng)應(yīng)用成效的因素都會提出優(yōu)化和改進措施。包括:根據(jù)城市地域特點和布局規(guī)劃,道路按照“科學布局、圍繞實戰(zhàn)、建用結(jié)合”的方法,通過治安卡口防控系統(tǒng),基于“圈”、“塊”、“格”、“線”、“點”的邏輯布局,在全市構(gòu)建技術(shù)防控“圈”、責任明晰的管控“塊”、基本封閉的單元“格”、掌握人車動態(tài)的軌跡“線”,以及防控有效的關(guān)鍵“點”,從而實現(xiàn)“區(qū)域全面監(jiān)控、時空無縫銜接、目標全程追蹤”的防控效果。
二、前端攝像機的智能化水平提升,使得車牌識別技術(shù)在常規(guī)視頻監(jiān)控系統(tǒng)中得到快速普及。以往需要在路口部署標準的卡口攝像機,現(xiàn)在可以在路段中間部署簡易卡口攝像機,在對普通監(jiān)控場景錄像的同時自動捕獲和識別車輛和車牌信息;此外,對社區(qū)出入口、加油站、停車場出入口等車輛進出口部署微型卡口攝像機,利用地形封閉的特點,對出入車輛實現(xiàn)自動抓拍和識別。
三、深度學習技術(shù)的發(fā)展,推動了圖片結(jié)構(gòu)化和特征提取的能力。早期建設(shè)的卡口系統(tǒng),智能分析能力弱,圖片質(zhì)量以及車牌識別準確率較低,經(jīng)常要根據(jù)品牌型號顏色等車輛自身固有信息,從海量過車圖片或視頻中,人工查找目標車輛,由于一線警力有限、勞動強度大、車型種類多、光線角度不確定等因素,無法保證查找的準確性和時效性,特別是突發(fā)緊急事件,經(jīng)常貽誤最佳處理時機。通過使用車輛深度學習系統(tǒng),對前端卡口或簡易卡口獲取的過車圖片進行特征結(jié)構(gòu)化分析識別,充分挖掘海量的卡口過車圖片中有價值信息,不但可以提高車牌車型的準確率,而且增加了車輛特征的識別信息,實現(xiàn)了車輛子品牌、車身顏色、不系安全帶、駕駛員接打電話、遮陽板狀態(tài)等識別檢測功能,對過車數(shù)據(jù)進行精細化校正,擺脫了傳統(tǒng)單純依靠車牌進行分析研判的單一手段,為卡口電警數(shù)據(jù)提供了更加豐富實用的車輛防控應(yīng)用,可以實現(xiàn)對高危車輛的有效預(yù)警防控,優(yōu)化警力部署進行針對性車輛排查,可以在大量涉車涉駕案件中有效鎖定嫌疑車輛,提高刑事偵查效能,使治安防控手段從事后被動偵查向事前主動預(yù)警轉(zhuǎn)變。
大數(shù)據(jù)提升城市治安及管理水平
大數(shù)據(jù)的價值在于通過對大數(shù)據(jù)進行高速捕獲和實時分析,及時獲取核心業(yè)務(wù)和戰(zhàn)略決策所需的關(guān)鍵信息,提升管理決策水平。
依據(jù)統(tǒng)計學,任何動態(tài)發(fā)展的事物,只要有足夠多的樣本數(shù)據(jù),就一定能從樣本數(shù)據(jù)中找到動態(tài)發(fā)展的規(guī)律。數(shù)據(jù)越多,準確率越高,這就是數(shù)據(jù)的價值所在。對于商業(yè)應(yīng)用,可以通過數(shù)據(jù)分析用戶行為規(guī)律從而提高銷售量、分析市場規(guī)律從而定點投放廣告降低成本;對于公安行業(yè),可以通過數(shù)據(jù)分析區(qū)域性犯罪趨勢,提前預(yù)防從而降低犯罪率,可以分析交通行為規(guī)律,提前做交通疏導(dǎo),提高交通通暢率。
2016年1月,政法委書記孟建柱同志提出大數(shù)據(jù)的八個推動,要求:1、推動理念創(chuàng)新,順應(yīng)互聯(lián)網(wǎng)時代的要求,確立合作、互通、共贏理念。2、推動風險共擔,運用眾創(chuàng)、眾包、眾智理念,讓大眾的問題由大眾來解決。3、推動“數(shù)據(jù)文化”,堅持用數(shù)據(jù)說話,防止拍腦袋隨意決策。4、推動創(chuàng)新風險預(yù)警機制,探索“人力 科技”、“傳統(tǒng) 現(xiàn)代”的風險預(yù)警模式。5、推動科技運用創(chuàng)新,大數(shù)據(jù)表示的是過去,但表達的是未來,得數(shù)據(jù)者得未來。6、推動運用新技術(shù),加強基層基礎(chǔ)建設(shè),把“不起眼”的信息匯集起來。7、推動社會信用體系建設(shè),堅持推行實名制和保護公民個人信息安全并重。8、推動國家信息安全維護,避免被他國“竊奪”數(shù)據(jù)信息控制權(quán)。
大數(shù)據(jù)通過對海量數(shù)據(jù)的整合和挖掘,揭示傳統(tǒng)技術(shù)方式難以展現(xiàn)的關(guān)聯(lián)關(guān)系,還可以預(yù)警風險,及時切斷風險鏈。例如:·針對堵車現(xiàn)象,實時采集車流數(shù)據(jù),自動控制信號燈,讓堵車能有所緩解。1.針對城鄉(xiāng)結(jié)合部“治安盲區(qū)”,采集人口流動信息,分析出潛在風險,警力針對性地科學調(diào)配;2.針對保險理賠,通過社會信息搜集分析系統(tǒng),上海等地正積極探索商業(yè)保險公司參與社會治理,將保險事務(wù)由“事后理賠”轉(zhuǎn)為“事先風險防范”;3.針對聚集疏導(dǎo),通過關(guān)鍵詞搜索技術(shù)、熱力圖技術(shù)、電子巡邏技術(shù)等,探索預(yù)測人群聚集苗頭和動向,人員過密時及時提示預(yù)警,適時分流人群;4.針對犯罪熱點,集成公安專業(yè)數(shù)據(jù),實時掌握犯罪軌跡、預(yù)判犯罪熱點,提高防范打擊犯罪的水平;5.針對安全生產(chǎn),工程建設(shè)特別容易出事,建立工程建設(shè)監(jiān)管和信用平臺,以大數(shù)據(jù)為依托,“全程留痕”,讓監(jiān)管“無死角”。
車輛大數(shù)據(jù)實際使用中面臨的問題
大數(shù)據(jù)的特征是大量性(規(guī)模超大、不斷攀升)、高速性(高速產(chǎn)生、處理高效)、多樣性(種類多樣、來源多樣)、低密性(有用數(shù)據(jù)提純)。海量數(shù)據(jù)給常規(guī)技術(shù)(獲取存儲管理、處理傳遞共享、關(guān)聯(lián)聚類分析)帶來了眾多挑戰(zhàn)——雖然數(shù)據(jù)很多,但是有用的數(shù)據(jù)只有34%,好用的數(shù)據(jù)僅有7%,被分析的數(shù)據(jù)更是少到只有1%。如何在海量的數(shù)據(jù)中提取出有價值的信息需要多學科多技術(shù)的研究。當前的特點是大數(shù)據(jù)、小模型、小定律交叉,即使是同一類問題,每個系統(tǒng)也都不一樣,所以模型和程序要針對數(shù)據(jù)設(shè)計。結(jié)構(gòu)化數(shù)據(jù)通過數(shù)據(jù)庫或者數(shù)據(jù)倉庫解決,半結(jié)構(gòu)化數(shù)據(jù)使用網(wǎng)頁和搜索引擎等技術(shù)解決,非結(jié)構(gòu)化數(shù)據(jù)使用深度學習、網(wǎng)絡(luò)交互和群體智能解決。
干警在實戰(zhàn)使用中,最主要的操作應(yīng)用是查詢車牌信息和其他過車記錄以便掌握線索。面對動輒幾十億、上百億甚至千億級別的海量過車數(shù)據(jù)的存儲和查詢壓力,如何進行可靠存儲和高效應(yīng)用?傳統(tǒng)的普通關(guān)系型數(shù)據(jù)庫解決方案和技術(shù)手段存在檢索難、并發(fā)難、挖掘難、擴容難、應(yīng)用難等一系列問題,速度慢、準確性差,需要投入大量的精力和資源進行技術(shù)升級改造。因此,及時準確獲取各類相關(guān)數(shù)據(jù)并構(gòu)建大數(shù)據(jù)處理模型是建設(shè)平安城市大數(shù)據(jù)中心的前提,而這一難題目前正逐步通過先進的大數(shù)據(jù)技術(shù)進行解決。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10