
大數(shù)據(jù),小數(shù)據(jù),哪道才是你的菜
美國(guó)著名科技?xì)v史學(xué)家梅爾文?克蘭茲伯格(Melvin Kranzberg),曾提出過(guò)大名鼎鼎的科技六定律,其中第三條定律是這樣的[1]:“技術(shù)是總是配“套”而來(lái)的,但這個(gè)“套”有大有?。═echnology comes in packages, big and small)”。
這個(gè)定律用在當(dāng)下,是非常應(yīng)景的。因?yàn)?,我們正步入一個(gè)“大數(shù)據(jù)(big data)”時(shí)代,但對(duì)于以往的“小數(shù)據(jù)(small data)”,我們能做到“事了拂衣去,深藏身與名”嗎?答案顯然不是。目前,大數(shù)據(jù)的前途似乎“星光燦爛”,但小數(shù)據(jù)的價(jià)值依然“風(fēng)采無(wú)限”。克蘭茲伯格的第三定律是告訴我們,新技術(shù)和老技術(shù)的自我革新演變,是交織在一起的。大數(shù)據(jù)和小數(shù)據(jù),他們“配套而來(lái)”,共同勾畫(huà)數(shù)據(jù)技術(shù)(Data Technology,DT)時(shí)代的未來(lái)。
對(duì)大數(shù)據(jù)的“溢美之詞”,已被舍恩伯格教授、涂子沛先生等先行者及其追隨者夸得泛濫成災(zāi)。但正如您所知,任何事情都有兩面性。在眾人都贊大數(shù)據(jù)很好的時(shí)候,我們也需說(shuō)道說(shuō)道大數(shù)據(jù)可能面臨的陷阱,只是為了讓大數(shù)據(jù)能走得更穩(wěn)。當(dāng)在大數(shù)據(jù)的光暈下,漸行漸遠(yuǎn)漸無(wú)小數(shù)據(jù)時(shí),我們也聊聊小數(shù)據(jù)之美,為的是“大小并行,不可偏廢”。大有大的好,小有小的妙,如同一桌菜,哪道才是你的愛(ài)?思量三番再下筷。
下文部分就是供讀者“思量”的材料,主要分為4個(gè)部分:(1)哪個(gè)V才是大數(shù)據(jù)最重要的特征?在這一部分里,我們聊聊大數(shù)據(jù)的4V特征中,哪個(gè)V才是大數(shù)據(jù)最貼切的特征,這是整個(gè)文章的行文基礎(chǔ)。(2)大數(shù)據(jù)的力量與陷阱。在這一部分,我們聊聊大數(shù)據(jù)整體的力量之美及可能面臨的3個(gè)陷阱。(3)今日王謝堂前燕,暫未飛入百姓家,在這一部分,我們要說(shuō)明,大數(shù)據(jù)雖然很火,但我們用數(shù)據(jù)發(fā)聲,用事實(shí)說(shuō)話,大數(shù)據(jù)真的沒(méi)有那么普及,小數(shù)據(jù)目前還是主流。(4)你若安好,便是晴天。在這一部分,我們說(shuō)說(shuō)的小數(shù)據(jù)之美,如果用“n=all”來(lái)代表大數(shù)據(jù),那么就可以用“n=me”來(lái)說(shuō)明小數(shù)據(jù)(這里n表示數(shù)據(jù)大?。?,我們將會(huì)看到,小數(shù)據(jù)更是關(guān)系到我們的切身利益。
1.哪個(gè)V才是大數(shù)據(jù)最重要的特征?
在談及大數(shù)據(jù)時(shí),人們通常用4V來(lái)描述其特征,即4個(gè)以V為首字母的英文:Volume(大量)、Variety(多樣)、Velocity(速快)及Value(價(jià)值)。如果 “閑來(lái)無(wú)事”,我們非要對(duì)這4個(gè)V在“兵器譜”上排排名,哪個(gè)才是大數(shù)據(jù)的貼切的特征呢?下面我們簡(jiǎn)要地說(shuō)道說(shuō)道,力圖說(shuō)出點(diǎn)新意,分析的結(jié)果或許會(huì)出乎您的意料之外。
1.1 “大”有不同——Volume(大量)
首先我們來(lái)說(shuō)說(shuō)大數(shù)據(jù)的第一個(gè)V——Volume(大量)。雖然數(shù)據(jù)規(guī)模巨大且持續(xù)保持高速增長(zhǎng),通常作為大數(shù)據(jù)的第一個(gè)特征。但事實(shí)上,早在20年前,在當(dāng)時(shí)的IT環(huán)境下,天文、氣象、高能物理、基因工程等領(lǐng)域的科研數(shù)據(jù)量,已是這些領(lǐng)域無(wú)法承受的“體積”之痛,當(dāng)時(shí)實(shí)時(shí)計(jì)算的難度不比現(xiàn)在小,因?yàn)槟菚r(shí)的存儲(chǔ)計(jì)算能力差,亦沒(méi)有成熟的云計(jì)算架構(gòu)和充分的計(jì)算資源。
況且,“大”本身就是一個(gè)相對(duì)的概念,數(shù)據(jù)的大與小,通常都打著很強(qiáng)的時(shí)代烙印。為了說(shuō)明這個(gè)觀點(diǎn),讓我們先回顧一下比爾?蓋茨的經(jīng)典“錯(cuò)誤”預(yù)測(cè)。
早在1981年,作為當(dāng)時(shí)的IT精英,比爾?蓋茨曾預(yù)測(cè)說(shuō),“640KB的內(nèi)存對(duì)每個(gè)人都應(yīng)該足夠了(640KB ought to be enough for anybody)”。但30多年后的今天,很多人都會(huì)笑話蓋茨,這么聰明的人,怎么會(huì)預(yù)測(cè)地如此不靠譜,現(xiàn)在隨便一個(gè)智能手機(jī)(或筆記本電腦)的內(nèi)存的大小都是4GB、8GB的。
但是,需要注意的事實(shí)是,在1981年,當(dāng)時(shí)的個(gè)人計(jì)算機(jī)(PC)是基于英特爾CPU 8088芯片的,這種CPU是基于8/16位(bit)混合構(gòu)架的處理器,因此,640KB已經(jīng)是這類CPU所能支持的尋址空間的理論極限(64KB)的 10倍[2],換句話說(shuō),640K在當(dāng)時(shí)是非常非常地龐大了!再回到現(xiàn)在,當(dāng)前PC機(jī)的CPU基本都是64bit的,其理論支持的尋址空間是2^64,而現(xiàn)在的4G內(nèi)存,僅僅是理論極限的(2^32)/(2^64)= 1/(2^32)而!。
在這里,講這個(gè)小故事的原因在于,衡量數(shù)據(jù)大小,不能脫離時(shí)代背景,不能脫離行業(yè)特征。此外,大數(shù)據(jù)布道者舍恩伯格教授在其著作《大數(shù)據(jù)時(shí)代》中指出[3],大數(shù)據(jù)在某種程度上,可理解為“全數(shù)據(jù)(即n=all)”。有時(shí),一個(gè)所謂的“全”數(shù)據(jù)庫(kù),并不需要有以TB/PB計(jì)的數(shù)據(jù)。在有些案例中,某個(gè)“全”數(shù)據(jù)庫(kù)大小,可能還不如一張普通的僅有幾個(gè)兆字節(jié)(MB)數(shù)碼照片大,但相對(duì)于以前的“部分”數(shù)據(jù),這個(gè)只有幾個(gè)兆字節(jié)(MB)大小的“全”數(shù)據(jù),就是大數(shù)據(jù)。故此,大數(shù)據(jù)之“大”,取義為相對(duì)意義,而非絕對(duì)意義。
這樣看來(lái),互聯(lián)網(wǎng)巨頭的PB級(jí)數(shù)據(jù),可算是大數(shù)據(jù),幾個(gè)MB的全數(shù)據(jù)也可算是大數(shù)據(jù),如此一來(lái),大數(shù)據(jù)之“大”——“大”有不同,可大可小,如此不“靠譜”,反而不能算作大數(shù)據(jù)最貼切的特征。
1.2 數(shù)據(jù)共征——“Velocity(快速)”與“Value(價(jià)值)”
英特爾中國(guó)研究院院長(zhǎng)吳甘沙先生曾指出,大數(shù)據(jù)的特征“Velocity(快速)”,猶如“天下武功,唯快不破”一樣,要講究個(gè)“快”字。為什么要“快”?因?yàn)闀r(shí)間就是金錢(qián)。如果說(shuō)價(jià)值是分子,那么時(shí)間就是分母,分母越小,單位價(jià)值就越大。面臨同樣大的數(shù)據(jù)“礦山”,“挖礦”效率是競(jìng)爭(zhēng)優(yōu)勢(shì)。
不過(guò),青年學(xué)者周濤教授卻認(rèn)為[4],1秒鐘算出來(lái)根本就不是大數(shù)據(jù)的特征,因?yàn)椤八愕迷娇煸胶谩保侨祟愖源蛴杏?jì)算這件事情以來(lái),就沒(méi)有變化過(guò),而現(xiàn)在,卻把它作為一個(gè)新時(shí)代的主要特征,完全是無(wú)稽之談。筆者也更傾向于這個(gè)說(shuō)法,把一個(gè)計(jì)算上的“通識(shí)”要求,算作一個(gè)新生事物的特征,確實(shí)欠妥。
類似不妥的還有大數(shù)據(jù)的另外一個(gè)特征——Value(價(jià)值)。事實(shí)上,“數(shù)據(jù)即價(jià)值”的價(jià)值觀古來(lái)有之。例如,在《孫子兵法?始計(jì)篇》中,早就有這樣的論斷“多算勝,少算不勝,而況于無(wú)算乎?”此處 “算”,乃算籌也,也就是計(jì)數(shù)用的籌碼,它講得就是,如何利用數(shù)字,來(lái)估計(jì)各種因素,從而做出決策。
在馬陵之戰(zhàn)中,孫臏通過(guò)編造“齊軍入魏地為十萬(wàn)灶,明日為五萬(wàn)灶,又明日為三萬(wàn)灶(史記·孫子吳起列傳)”的數(shù)據(jù),利用龐涓的數(shù)據(jù)分析習(xí)慣,反其道而用之,對(duì)龐涓實(shí)施誘殺。
話說(shuō)還有一個(gè)關(guān)于林彪將軍的段子(真假不可考),在遼沈戰(zhàn)役中,林大將軍通過(guò)分析繳獲的短槍與長(zhǎng)槍比例、繳獲和擊毀小車與大車比例,以及俘虜和擊斃的軍官與士兵的比例“異常”,因此得出結(jié)論,敵人的指揮所就在附近!果不其然,通過(guò)追擊從胡家窩棚逃走的那部分?jǐn)橙耍钭絿?guó)民黨主帥新六軍軍長(zhǎng)廖耀湘。
在戰(zhàn)場(chǎng)上,大數(shù)據(jù)的價(jià)值——就是輔助決策來(lái)獲勝。還有一點(diǎn)值得注意的是,在上面的案例中,戰(zhàn)場(chǎng)上的數(shù)據(jù),神機(jī)妙算的軍師們,都能“掐指一算”——這顯然屬于十足的小數(shù)據(jù)!但網(wǎng)上卻流傳有很多諸如“林彪也玩大數(shù)據(jù)”、“跟著林彪學(xué)習(xí)大數(shù)據(jù)”等類似的文章,這就純屬扯淡了。如果凡是有點(diǎn)數(shù)據(jù)分析思維的案例,都?xì)w屬于大數(shù)據(jù)的話,那大數(shù)據(jù)的案例,古往今來(lái),可真是數(shù)不勝數(shù)了
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
數(shù)據(jù)分析師的技能圖譜:從數(shù)據(jù)到價(jià)值的橋梁? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,數(shù)據(jù)分析師如同 “數(shù)據(jù)翻譯官”,將冰冷的數(shù)字轉(zhuǎn)化為清晰的 ...
2025-07-17Pandas 寫(xiě)入指定行數(shù)據(jù):數(shù)據(jù)精細(xì)化管理的核心技能? 在數(shù)據(jù)處理的日常工作中,我們常常需要面對(duì)這樣的場(chǎng)景:在龐大的數(shù)據(jù)集里精 ...
2025-07-17解碼 CDA:數(shù)據(jù)時(shí)代的通行證? 在數(shù)字化浪潮席卷全球的今天,當(dāng)企業(yè)決策者盯著屏幕上跳動(dòng)的數(shù)據(jù)曲線尋找增長(zhǎng)密碼,當(dāng)科研人員在 ...
2025-07-17CDA 精益業(yè)務(wù)數(shù)據(jù)分析:數(shù)據(jù)驅(qū)動(dòng)業(yè)務(wù)增長(zhǎng)的實(shí)戰(zhàn)方法論 在企業(yè)數(shù)字化轉(zhuǎn)型的浪潮中,“數(shù)據(jù)分析” 已從 “加分項(xiàng)” 成為 “必修課 ...
2025-07-16MySQL 中 ADD KEY 與 ADD INDEX 詳解:用法、差異與優(yōu)化實(shí)踐 在 MySQL 數(shù)據(jù)庫(kù)表結(jié)構(gòu)設(shè)計(jì)中,索引是提升查詢性能的核心手段。無(wú)論 ...
2025-07-16解析 MySQL Update 語(yǔ)句中 “query end” 狀態(tài):含義、成因與優(yōu)化指南? 在 MySQL 數(shù)據(jù)庫(kù)的日常運(yùn)維與開(kāi)發(fā)中,開(kāi)發(fā)者和 DBA 常會(huì) ...
2025-07-16如何考取數(shù)據(jù)分析師證書(shū):以 CDA 為例? ? 在數(shù)字化浪潮席卷各行各業(yè)的當(dāng)下,數(shù)據(jù)分析師已然成為企業(yè)挖掘數(shù)據(jù)價(jià)值、驅(qū)動(dòng)決策的 ...
2025-07-15CDA 精益業(yè)務(wù)數(shù)據(jù)分析:驅(qū)動(dòng)企業(yè)高效決策的核心引擎? 在數(shù)字經(jīng)濟(jì)時(shí)代,企業(yè)面臨著前所未有的數(shù)據(jù)洪流,如何從海量數(shù)據(jù)中提取有 ...
2025-07-15MySQL 無(wú)外鍵關(guān)聯(lián)表的 JOIN 實(shí)戰(zhàn):數(shù)據(jù)整合的靈活之道? 在 MySQL 數(shù)據(jù)庫(kù)的日常操作中,我們經(jīng)常會(huì)遇到需要整合多張表數(shù)據(jù)的場(chǎng)景 ...
2025-07-15Python Pandas:數(shù)據(jù)科學(xué)的瑞士軍刀? ? 在數(shù)據(jù)驅(qū)動(dòng)的時(shí)代,面對(duì)海量、復(fù)雜的數(shù)據(jù),如何高效地進(jìn)行處理、分析和挖掘成為關(guān)鍵。 ...
2025-07-15用 SQL 生成逆向回滾 SQL:數(shù)據(jù)操作的 “后悔藥” 指南? 在數(shù)據(jù)庫(kù)操作中,誤刪數(shù)據(jù)、錯(cuò)改字段或誤執(zhí)行批量更新等問(wèn)題時(shí)有發(fā)生。 ...
2025-07-14t檢驗(yàn)與Wilcoxon檢驗(yàn)的選擇:何時(shí)用t.test,何時(shí)用wilcox.test? t 檢驗(yàn)與 Wilcoxon 檢驗(yàn)的選擇:何時(shí)用 t.test,何時(shí)用 wilcox. ...
2025-07-14AI 浪潮下的生存與進(jìn)階: CDA數(shù)據(jù)分析師—開(kāi)啟新時(shí)代職業(yè)生涯的鑰匙(深度研究報(bào)告、發(fā)展指導(dǎo)白皮書(shū)) 發(fā)布機(jī)構(gòu):CDA數(shù)據(jù)科 ...
2025-07-13LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10