
7種常用的互聯(lián)網(wǎng)數(shù)據(jù)挖掘技術(shù)
數(shù)據(jù)挖掘的技術(shù)有很多種,按照不同的分類有不同的分類法。
下面著重討論一下互聯(lián)網(wǎng)數(shù)據(jù)挖掘中常用的一些技術(shù):統(tǒng)計技術(shù),關聯(lián)規(guī)則,連接分析,決策樹,神經(jīng)網(wǎng)絡,差別分析,概念描述七種常用的互聯(lián)網(wǎng)數(shù)據(jù)挖掘的技術(shù)。
數(shù)據(jù)挖掘涉及的科學領域和技術(shù)很多,如統(tǒng)計技術(shù)。統(tǒng)計技術(shù)對數(shù)據(jù)集進行挖掘的主要思想是:統(tǒng)計的方法對給定的數(shù)據(jù)集合假設了一個分布或者概率模型(例如一個正態(tài)分布)然后根據(jù)模型采用相應的方法來進行挖掘。
連接分析,Link analysis,它的基本理論是圖論。圖論的思想是尋找一個可以得出好結(jié)果但不是完美結(jié)果的算法,而不是去尋找完美的解的算法。連接分析就是運用了這樣的思想:不完美的結(jié)果如果是可行的,那么這樣的分析就是一個好的分析。利用連接分析,可以從一些用戶的行為中分析出一些模式;同時將產(chǎn)生的概念應用于更廣的用戶群體中。
決策樹提供了一種展示類似在什么條件下會得到什么值這類規(guī)則的方法。
在結(jié)構(gòu)上,可以把一個神經(jīng)網(wǎng)絡劃分為輸入層、輸出層和隱含層。輸入層的每個節(jié)點對應—個個的預測變量。輸出層的節(jié)點對應目標變量,可有多個。在輸入層和輸出層之間是隱含層(對神經(jīng)網(wǎng)絡使用者來說不可見),隱含層的層數(shù)和每層節(jié)點的個數(shù)決定了神經(jīng)網(wǎng)絡的復雜度。
差別分析的目的是試圖發(fā)現(xiàn)數(shù)據(jù)中的異常情況,如噪音數(shù)據(jù)等異常數(shù)據(jù),從而獲得有用信息。
概念描述就是對某類對象的內(nèi)涵進行描述,并概括這類對象的有關特征。概念描述分為特征性描述和區(qū)別性描述,前者描述某類對象的共同特征,后者描述不同類對象之間的區(qū)別,生成一個類的特征性描述只涉及該類對象中所有對象的共性。
步入互聯(lián)網(wǎng)時代,人們更加急切需要將存在于數(shù)據(jù)庫和其他信息庫中的數(shù)據(jù)轉(zhuǎn)化為有用的信息,因而數(shù)據(jù)挖掘被認為是一門非常重要的、具有廣闊應用前景和富有挑戰(zhàn)性的研究領域。隨著數(shù)據(jù)挖掘的進一步發(fā)展,它必然會帶給用戶更大的利益。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10