
Hadoop技術(shù)全解析 深度挖掘大數(shù)據(jù)背后的秘密
大數(shù)據(jù)最近火熱程度上升,而與之相關(guān)聯(lián)的概念Hadoop也在被網(wǎng)友討論?Hadoop到底是什么,它的技術(shù)基礎(chǔ)是什么,主要用來干什么了呢?下面我們將詳細(xì)探討。
在了解以上問題之前,我們先了解三個(gè)最基本的知識(shí)點(diǎn),這樣子,你更能深入地了解大數(shù)據(jù)的內(nèi)涵。
1.大數(shù)據(jù)是什么?
2.Hadoop是什么?
3.大數(shù)據(jù)與Hadoop之間是什么關(guān)系?
大數(shù)據(jù)概念:史上最全大數(shù)據(jù)解析
hadoop是什么:分布式系統(tǒng)基礎(chǔ)架構(gòu)
大數(shù)據(jù)與Hadoo之間是什么關(guān)系?
如果你能基本了解上面三篇文章的內(nèi)容,說明你已經(jīng)對(duì)大數(shù)據(jù)和Hadoop有了一定的認(rèn)識(shí),有能力進(jìn)入下一階段的學(xué)習(xí)。下面我們將分享一篇有關(guān)大數(shù)據(jù)和Hadoop的相關(guān)文章,很有意思哦!
Hadoop那點(diǎn)兒事:為何很多公司的大數(shù)據(jù)業(yè)務(wù)基于Hadoop方案?
在看完上面的文章后,相信你已經(jīng)成為半個(gè)Hadoop專家,那么我們一起來更深入地了解相關(guān)知識(shí)吧!
分布式計(jì)算(Distributed Computing)
對(duì)于如何處理大數(shù)據(jù),計(jì)算機(jī)科學(xué)界有兩大方向:第一個(gè)方向是集中式計(jì)算,就是通過不斷增加處理器的數(shù)量來增強(qiáng)單個(gè)計(jì)算機(jī)的計(jì)算能力,從而提高處理數(shù)據(jù)的速度。第二個(gè)方向是分布式計(jì)算,就是把一組計(jì)算機(jī)通過網(wǎng)絡(luò)相互連接組成分散系統(tǒng),然后將需要處理的大量數(shù)據(jù)分散成多個(gè)部分,交由分散系統(tǒng)內(nèi)的計(jì)算機(jī)組同時(shí)計(jì)算,最后將這些計(jì)算結(jié)果合并得到最終的結(jié)果。盡管分散系統(tǒng)內(nèi)的單個(gè)計(jì)算機(jī)的計(jì)算能力不強(qiáng),但是由于每個(gè)計(jì)算機(jī)只計(jì)算一部分?jǐn)?shù)據(jù),而且是多臺(tái)計(jì)算機(jī)同時(shí)計(jì)算,所以就分散系統(tǒng)而言,處理數(shù)據(jù)的速度會(huì)遠(yuǎn)高于單個(gè)計(jì)算機(jī)。
過去,分布式計(jì)算理論比較復(fù)雜,技術(shù)實(shí)現(xiàn)比較困難,因此在處理大數(shù)據(jù)方面,集中式計(jì)算一直是主流解決方案。IBM的大型機(jī)就是集中式計(jì)算的典型硬件,很多銀行和政府機(jī)構(gòu)都用它處理大數(shù)據(jù)。不過,對(duì)于當(dāng)時(shí)的互聯(lián)網(wǎng)公司來說,IBM的大型機(jī)的價(jià)格過于昂貴。因此,互聯(lián)網(wǎng)公司的把研究方向放在了可以使用在廉價(jià)計(jì)算機(jī)上的分布式計(jì)算上。
服務(wù)器集群(Server Cluster)
服務(wù)器集群是一種提升服務(wù)器整體計(jì)算能力的解決方案。它是由互相連接在一起的服務(wù)器群所組成的一個(gè)并行式或分布式系統(tǒng)。服務(wù)器集群中的服務(wù)器運(yùn)行同一個(gè)計(jì)算任務(wù)。因此,從外部看,這群服務(wù)器表現(xiàn)為一臺(tái)虛擬的服務(wù)器,對(duì)外提供統(tǒng)一的服務(wù)。
盡管單臺(tái)服務(wù)器的運(yùn)算能力有限,但是將成百上千的服務(wù)器組成服務(wù)器集群后,整個(gè)系統(tǒng)就具備了強(qiáng)大的運(yùn)算能力,可以支持大數(shù)據(jù)分析的運(yùn)算負(fù)荷。Google,Amazon,阿里巴巴的計(jì)算中心里的服務(wù)器集群都達(dá)到了5000臺(tái)服務(wù)器的規(guī)模。
大數(shù)據(jù)的技術(shù)基礎(chǔ):MapReduce、Google File System和BigTable
2003年到2004年間,Google發(fā)表了MapReduce、GFS(Google File System)和BigTable三篇技術(shù)論文,提出了一套全新的分布式計(jì)算理論。
MapReduce是分布式計(jì)算框架,GFS(Google File System)是分布式文件系統(tǒng),BigTable是基于Google File System的數(shù)據(jù)存儲(chǔ)系統(tǒng),這三大組件組成了Google的分布式計(jì)算模型。
Google的分布式計(jì)算模型相比于傳統(tǒng)的分布式計(jì)算模型有三大優(yōu)勢(shì):首先,它簡(jiǎn)化了傳統(tǒng)的分布式計(jì)算理論,降低了技術(shù)實(shí)現(xiàn)的難度,可以進(jìn)行實(shí)際的應(yīng)用。其次,它可以應(yīng)用在廉價(jià)的計(jì)算設(shè)備上,只需增加計(jì)算設(shè)備的數(shù)量就可以提升整體的計(jì)算能力,應(yīng)用成本十分低廉。最后,它被Google應(yīng)用在Google的計(jì)算中心,取得了很好的效果,有了實(shí)際應(yīng)用的證明。
后來,各家互聯(lián)網(wǎng)公司開始利用Google的分布式計(jì)算模型搭建自己的分布式計(jì)算系統(tǒng),Google的這三篇論文也就成為了大數(shù)據(jù)時(shí)代的技術(shù)核心。
當(dāng)時(shí)谷歌采用分布式計(jì)算理論也是為了利用廉價(jià)的資源,發(fā)揮出更大的效用,他的成功使人們開始效仿,因此而產(chǎn)生了Hadoop。
Hadoop體系和Google體系各方面的對(duì)應(yīng)關(guān)系。Hadoop MapReduce相當(dāng)于MapReduce,HDFS相當(dāng)于GFS,HBase相當(dāng)于BigTable
Hadoop體系: Hadoop MapReduce HDFS HBase
Google體系: MapReduce GFS BigTable
有不少網(wǎng)友對(duì)Hadoop,Spark和Storm的概念比較模糊,他們之間的聯(lián)系也不是很清楚,那么請(qǐng)你在了解了下面的內(nèi)容后,逐一為他們解答吧!
主流的三大分布式計(jì)算系統(tǒng):Hadoop,Spark和Storm
由于Google沒有開源Google分布式計(jì)算模型的技術(shù)實(shí)現(xiàn),所以其他互聯(lián)網(wǎng)公司只能根據(jù)Google三篇技術(shù)論文中的相關(guān)原理,搭建自己的分布式計(jì)算系統(tǒng)。
Yahoo的工程師Doug Cutting和Mike Cafarella在2005年合作開發(fā)了分布式計(jì)算系統(tǒng)Hadoop。后來,Hadoop被貢獻(xiàn)給了Apache基金會(huì),成為了Apache基金會(huì)的開源項(xiàng)目。Doug Cutting也成為Apache基金會(huì)的主席,主持Hadoop的開發(fā)工作。
Hadoop采用MapReduce分布式計(jì)算框架,并根據(jù)GFS開發(fā)了HDFS分布式文件系統(tǒng),根據(jù)BigTable開發(fā)了HBase數(shù)據(jù)存儲(chǔ)系統(tǒng)。盡管和Google內(nèi)部使用的分布式計(jì)算系統(tǒng)原理相同,但是Hadoop在運(yùn)算速度上依然達(dá)不到Google論文中的標(biāo)準(zhǔn)。
不過,Hadoop的開源特性使其成為分布式計(jì)算系統(tǒng)的事實(shí)上的國(guó)際標(biāo)準(zhǔn)。Yahoo,F(xiàn)acebook,Amazon以及國(guó)內(nèi)的百度,阿里巴巴等眾多互聯(lián)網(wǎng)公司都以Hadoop為基礎(chǔ)搭建自己的分布式計(jì)算系統(tǒng)。
Spark也是Apache基金會(huì)的開源項(xiàng)目,它由加州大學(xué)伯克利分校的實(shí)驗(yàn)室開發(fā),是另外一種重要的分布式計(jì)算系統(tǒng)。它在Hadoop的基礎(chǔ)上進(jìn)行了一些架構(gòu)上的改良。Spark與Hadoop最大的不同點(diǎn)在于,Hadoop使用硬盤來存儲(chǔ)數(shù)據(jù),而Spark使用內(nèi)存來存儲(chǔ)數(shù)據(jù),因此Spark可以提供超過Hadoop100倍的運(yùn)算速度。但是,由于內(nèi)存斷電后會(huì)丟失數(shù)據(jù),Spark不能用于處理需要長(zhǎng)期保存的數(shù)據(jù)。
Storm是Twitter主推的分布式計(jì)算系統(tǒng),它由BackType團(tuán)隊(duì)開發(fā),是Apache基金會(huì)的孵化項(xiàng)目。它在Hadoop的基礎(chǔ)上提供了實(shí)時(shí)運(yùn)算的特性,可以實(shí)時(shí)的處理大數(shù)據(jù)流。不同于Hadoop和Spark,Storm不進(jìn)行數(shù)據(jù)的收集和存儲(chǔ)工作,它直接通過網(wǎng)絡(luò)實(shí)時(shí)的接受數(shù)據(jù)并且實(shí)時(shí)的處理數(shù)據(jù),然后直接通過網(wǎng)絡(luò)實(shí)時(shí)的傳回結(jié)果。
Hadoop,Spark和Storm是目前最重要的三大分布式計(jì)算系統(tǒng),Hadoop常用于離線的復(fù)雜的大數(shù)據(jù)處理,Spark常用于離線的快速的大數(shù)據(jù)處理,而Storm常用于在線的實(shí)時(shí)的大數(shù)據(jù)處理。
在了解完上面的內(nèi)容后,你如果覺得意猶未盡,還想再深入挖掘,那么向你推薦兩篇比較不錯(cuò)的文章。第一篇是對(duì)描寫大數(shù)據(jù)在實(shí)際生活中應(yīng)用,看完之后,你會(huì)發(fā)現(xiàn),大數(shù)據(jù)其實(shí)就在身邊;第二篇是大數(shù)據(jù)的相關(guān)概念:云計(jì)算,看完之后,你很可能就成為大數(shù)據(jù)專家了!
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫(kù)管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫(kù)表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫(kù)表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫(kù))處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫(kù)表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長(zhǎng)浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營(yíng)問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營(yíng)銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營(yíng)銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡(jiǎn)單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10