
scikit-learn的主要模塊和基本使用
對于一些開始搞機器學(xué)習(xí)算法有害怕下手的小朋友,該如何快速入門,這讓人挺掙扎的。
在從事數(shù)據(jù)科學(xué)的人中,最常用的工具就是R和Python了,每個工具都有其利弊,但是Python在各方面都相對勝出一些,這是因為scikit-learn庫實現(xiàn)了很多機器學(xué)習(xí)算法。
我們假設(shè)輸入時一個特征矩陣或者csv文件。
首先,數(shù)據(jù)應(yīng)該被載入內(nèi)存中。
scikit-learn的實現(xiàn)使用了NumPy中的arrays,所以,我們要使用NumPy來載入csv文件。
以下是從UCI機器學(xué)習(xí)數(shù)據(jù)倉庫中下載的數(shù)據(jù)。
import numpy as np import urllib # url with dataset url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data" # download the file raw_data = urllib.urlopen(url) # load the CSV file as a numpy matrix dataset = np.loadtxt(raw_data, delimiter=",") # separate the data from the target attributes X = dataset[:,0:7]
y = dataset[:,8]
我們要使用該數(shù)據(jù)集作為例子,將特征矩陣作為X,目標(biāo)變量作為y。
大多數(shù)機器學(xué)習(xí)算法中的梯度方法對于數(shù)據(jù)的縮放和尺度都是很敏感的,在開始跑算法之前,我們應(yīng)該進行歸一化或者標(biāo)準(zhǔn)化的過程,這使得特征數(shù)據(jù)縮放到0-1范圍中。scikit-learn提供了歸一化的方法:
from sklearn import preprocessing # normalize the data attributes normalized_X = preprocessing.normalize(X) # standardize the data attributes standardized_X = preprocessing.scale(X)
在解決一個實際問題的過程中,選擇合適的特征或者構(gòu)建特征的能力特別重要。這成為特征選擇或者特征工程。
特征選擇時一個很需要創(chuàng)造力的過程,更多的依賴于直覺和專業(yè)知識,并且有很多現(xiàn)成的算法來進行特征的選擇。
下面的樹算法(Tree algorithms)計算特征的信息量:
from sklearn import metrics from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X, y) # display the relative importance of each attribute print(model.feature_importances_)
scikit-learn實現(xiàn)了機器學(xué)習(xí)的大部分基礎(chǔ)算法,讓我們快速了解一下。
大多數(shù)問題都可以歸結(jié)為二元分類問題。這個算法的優(yōu)點是可以給出數(shù)據(jù)所在類別的概率。
from sklearn import metrics from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, penalty=l2, random_state=None, tol=0.0001)
precision recall f1-score support0.0 0.79 0.89 0.84 500 1.0 0.74 0.55 0.63 268avg / total 0.77 0.77 0.77 768
[[447 53]
[120 148]]
這也是著名的機器學(xué)習(xí)算法,該方法的任務(wù)是還原訓(xùn)練樣本數(shù)據(jù)的分布密度,其在多類別分類中有很好的效果。
from sklearn import metrics from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
GaussianNB()
precision recall f1-score support0.0 0.80 0.86 0.83 500 1.0 0.69 0.60 0.64 268avg / total 0.76 0.77 0.76 768
[[429 71]
[108 160]]
k近鄰算法常常被用作是分類算法一部分,比如可以用它來評估特征,在特征選擇上我們可以用到它。
from sklearn import metrics from sklearn.neighbors import KNeighborsClassifier # fit a k-nearest neighbor model to the data model = KNeighborsClassifier()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
KNeighborsClassifier(algorithm=auto, leaf_size=30, metric=minkowski,
n_neighbors=5, p=2, weights=uniform)
precision recall f1-score support0.0 0.82 0.90 0.86 500 1.0 0.77 0.63 0.69 268avg / total 0.80 0.80 0.80 768
[[448 52]
[ 98 170]]
分類與回歸樹(Classification and Regression Trees ,CART)算法常用于特征含有類別信息的分類或者回歸問題,這種方法非常適用于多分類情況。
from sklearn import metrics from sklearn.tree import DecisionTreeClassifier # fit a CART model to the data model = DecisionTreeClassifier()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
DecisionTreeClassifier(compute_importances=None, criterion=gini,
max_depth=None, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter=best)
precision recall f1-score support0.0 1.00 1.00 1.00 500 1.0 1.00 1.00 1.00 268avg / total 1.00 1.00 1.00 768
[[500 0]
[ 0 268]]
SVM是非常流行的機器學(xué)習(xí)算法,主要用于分類問題,如同邏輯回歸問題,它可以使用一對多的方法進行多類別的分類。
from sklearn import metrics from sklearn.svm import SVC # fit a SVM model to the data model = SVC()
model.fit(X, y)
print(model) # make predictions expected = y
predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel=rbf, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
precision recall f1-score support0.0 1.00 1.00 1.00 500 1.0 1.00 1.00 1.00 268avg / total 1.00 1.00 1.00 768
[[500 0]
[ 0 268]]
除了分類和回歸算法外,scikit-learn提供了更加復(fù)雜的算法,比如聚類算法,還實現(xiàn)了算法組合的技術(shù),如Bagging和Boosting算法。
一項更加困難的任務(wù)是構(gòu)建一個有效的方法用于選擇正確的參數(shù),我們需要用搜索的方法來確定參數(shù)。scikit-learn提供了實現(xiàn)這一目標(biāo)的函數(shù)。
下面的例子是一個進行正則參數(shù)選擇的程序:
import numpy as np from sklearn.linear_model import Ridge from sklearn.grid_search import GridSearchCV # prepare a range of alpha values to test alphas = np.array([1,0.1,0.01,0.001,0.0001,0]) # create and fit a ridge regression model, testing each alpha model = Ridge()
grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))
grid.fit(X, y)
print(grid) # summarize the results of the grid search print(grid.best_score_)
print(grid.best_estimator_.alpha)
結(jié)果:
GridSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, loss_func=None,
n_jobs=1,
param_grid={‘a(chǎn)lpha’: array([ 1.00000e+00, 1.00000e-01, 1.00000e-02, 1.00000e-03,
1.00000e-04, 0.00000e+00])},
pre_dispatch=2*n_jobs, refit=True, score_func=None, scoring=None,
verbose=0)
0.282118955686
1.0
有時隨機從給定區(qū)間中選擇參數(shù)是很有效的方法,然后根據(jù)這些參數(shù)來評估算法的效果進而選擇最佳的那個。
import numpy as np from scipy.stats import uniform as sp_rand from sklearn.linear_model import Ridge from sklearn.grid_search import RandomizedSearchCV # prepare a uniform distribution to sample for the alpha parameter param_grid = {'alpha': sp_rand()} # create and fit a ridge regression model, testing random alpha values model = Ridge()
rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100)
rsearch.fit(X, y)
print(rsearch) # summarize the results of the random parameter search print(rsearch.best_score_)
print(rsearch.best_estimator_.alpha)
結(jié)果:
RandomizedSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, n_iter=100,
n_jobs=1,
param_distributions={‘a(chǎn)lpha’:
我們總體了解了使用scikit-learn庫的大致流程,希望這些總結(jié)能讓初學(xué)者沉下心來,一步一步盡快的學(xué)習(xí)如何去解決具體的機器學(xué)習(xí)問題。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實踐的落地者與價值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價值,最終要在 “實踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10機器學(xué)習(xí)解決實際問題的核心關(guān)鍵:從業(yè)務(wù)到落地的全流程解析 在人工智能技術(shù)落地的浪潮中,機器學(xué)習(xí)作為核心工具,已廣泛應(yīng)用于 ...
2025-09-09SPSS 編碼狀態(tài)區(qū)域中 Unicode 的功能與價值解析 在 SPSS(Statistical Product and Service Solutions,統(tǒng)計產(chǎn)品與服務(wù)解決方案 ...
2025-09-09