99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
首頁(yè)精彩閱讀2分鐘讀懂Hadoop和Spark的異同
2分鐘讀懂Hadoop和Spark的異同
2016-03-06
收藏

2分鐘讀懂Hadoop和Spark的異同

談到大數(shù)據(jù),相信大家對(duì)Hadoop和Apache Spark這兩個(gè)名字并不陌生。但我們往往對(duì)它們的理解只是提留在字面上,并沒有對(duì)它們進(jìn)行深入的思考,下面不妨跟我一塊看下它們究竟有什么異同。

\
  解決問題的層面不一樣
首先,Hadoop和Apache Spark兩者都是大數(shù)據(jù)框架,但是各自存在的目的不盡相同。Hadoop實(shí)質(zhì)上更多是一個(gè)分布式數(shù)據(jù)基礎(chǔ)設(shè)施: 它將巨大的數(shù)據(jù)集分派到一個(gè)由普通計(jì)算機(jī)組成的集群中的多個(gè)節(jié)點(diǎn)進(jìn)行存儲(chǔ),意味著您不需要購(gòu)買和維護(hù)昂貴的服務(wù)器硬件。
同時(shí),Hadoop還會(huì)索引和跟蹤這些數(shù)據(jù),讓大數(shù)據(jù)處理和分析效率達(dá)到前所未有的高度。Spark,則是那么一個(gè)專門用來(lái)對(duì)那些分布式存儲(chǔ)的大數(shù)據(jù)進(jìn)行處理的工具,它并不會(huì)進(jìn)行分布式數(shù)據(jù)的存儲(chǔ)。
  兩者可合可分
Hadoop除了提供為大家所共識(shí)的HDFS分布式數(shù)據(jù)存儲(chǔ)功能之外,還提供了叫做MapReduce的數(shù)據(jù)處理功能。所以這里我們完全可以拋開Spark,使用Hadoop自身的MapReduce來(lái)完成數(shù)據(jù)的處理。
相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,畢竟它沒有提供文件管理系統(tǒng),所以,它必須和其他的分布式文件系統(tǒng)進(jìn)行集成才能運(yùn)作。這里我們可以選擇HadoopHDFS,也可以選擇其他的基于云的數(shù)據(jù)系統(tǒng)平臺(tái)。但Spark默認(rèn)來(lái)說還是被用在Hadoop上面的,畢竟,大家都認(rèn)為它們的結(jié)合是最好的。
以下是從網(wǎng)上摘錄的對(duì)MapReduce的最簡(jiǎn)潔明了的解析:
  我們要數(shù)圖書館中的所有書。你數(shù)1號(hào)書架,我數(shù)2號(hào)書架。這就是“Map”。我們?nèi)嗽蕉?,?shù)書就更快。
現(xiàn)在我們到一起,把所有人的統(tǒng)計(jì)數(shù)加在一起。這就是“Reduce”。
  Spark數(shù)據(jù)處理速度秒殺MapReduce
Spark因?yàn)槠涮幚頂?shù)據(jù)的方式不一樣,會(huì)比MapReduce快上很多。MapReduce是分步對(duì)數(shù)據(jù)進(jìn)行處理的: ”從集群中讀取數(shù)據(jù),進(jìn)行一次處理,將結(jié)果寫到集群,從集群中讀取更新后的數(shù)據(jù),進(jìn)行下一次的處理,將結(jié)果寫到集群,等等…“ Booz Allen Hamilton的數(shù)據(jù)科學(xué)家Kirk Borne如此解析。
反觀Spark,它會(huì)在內(nèi)存中以接近“實(shí)時(shí)”的時(shí)間完成所有的數(shù)據(jù)分析:“從集群中讀取數(shù)據(jù),完成所有必須的分析處理,將結(jié)果寫回集群,完成,” Born說道。Spark的批處理速度比MapReduce快近10倍,內(nèi)存中的數(shù)據(jù)分析速度則快近100倍。
如果需要處理的數(shù)據(jù)和結(jié)果需求大部分情況下是靜態(tài)的,且你也有耐心等待批處理的完成的話,MapReduce的處理方式也是完全可以接受的。
但如果你需要對(duì)流數(shù)據(jù)進(jìn)行分析,比如那些來(lái)自于工廠的傳感器收集回來(lái)的數(shù)據(jù),又或者說你的應(yīng)用是需要多重?cái)?shù)據(jù)處理的,那么你也許更應(yīng)該使用Spark進(jìn)行處理。
大部分機(jī)器學(xué)習(xí)算法都是需要多重?cái)?shù)據(jù)處理的。此外,通常會(huì)用到Spark的應(yīng)用場(chǎng)景有以下方面:實(shí)時(shí)的市場(chǎng)活動(dòng),在線產(chǎn)品推薦,網(wǎng)絡(luò)安全分析,機(jī)器日記監(jiān)控等。
  災(zāi)難恢復(fù)
兩者的災(zāi)難恢復(fù)方式迥異,但是都很不錯(cuò)。因?yàn)?a href='/map/hadoop/' style='color:#000;font-size:inherit;'>Hadoop將每次處理后的數(shù)據(jù)都寫入到磁盤上,所以其天生就能很有彈性的對(duì)系統(tǒng)錯(cuò)誤進(jìn)行處理。
Spark的數(shù)據(jù)對(duì)象存儲(chǔ)在分布于數(shù)據(jù)集群中的叫做彈性分布式數(shù)據(jù)集(RDD: Resilient Distributed Dataset)中?!斑@些數(shù)據(jù)對(duì)象既可以放在內(nèi)存,也可以放在磁盤,所以RDD同樣也可以提供完成的災(zāi)難恢復(fù)功能,”Borne指出。

數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼

若不方便掃碼,搜微信號(hào):CDAshujufenxi

數(shù)據(jù)分析師資訊
更多

OK
客服在線
立即咨詢
客服在線
立即咨詢
') } function initGt() { var handler = function (captchaObj) { captchaObj.appendTo('#captcha'); captchaObj.onReady(function () { $("#wait").hide(); }).onSuccess(function(){ $('.getcheckcode').removeClass('dis'); $('.getcheckcode').trigger('click'); }); window.captchaObj = captchaObj; }; $('#captcha').show(); $.ajax({ url: "/login/gtstart?t=" + (new Date()).getTime(), // 加隨機(jī)數(shù)防止緩存 type: "get", dataType: "json", success: function (data) { $('#text').hide(); $('#wait').show(); // 調(diào)用 initGeetest 進(jìn)行初始化 // 參數(shù)1:配置參數(shù) // 參數(shù)2:回調(diào),回調(diào)的第一個(gè)參數(shù)驗(yàn)證碼對(duì)象,之后可以使用它調(diào)用相應(yīng)的接口 initGeetest({ // 以下 4 個(gè)配置參數(shù)為必須,不能缺少 gt: data.gt, challenge: data.challenge, offline: !data.success, // 表示用戶后臺(tái)檢測(cè)極驗(yàn)服務(wù)器是否宕機(jī) new_captcha: data.new_captcha, // 用于宕機(jī)時(shí)表示是新驗(yàn)證碼的宕機(jī) product: "float", // 產(chǎn)品形式,包括:float,popup width: "280px", https: true // 更多配置參數(shù)說明請(qǐng)參見:http://docs.geetest.com/install/client/web-front/ }, handler); } }); } function codeCutdown() { if(_wait == 0){ //倒計(jì)時(shí)完成 $(".getcheckcode").removeClass('dis').html("重新獲取"); }else{ $(".getcheckcode").addClass('dis').html("重新獲取("+_wait+"s)"); _wait--; setTimeout(function () { codeCutdown(); },1000); } } function inputValidate(ele,telInput) { var oInput = ele; var inputVal = oInput.val(); var oType = ele.attr('data-type'); var oEtag = $('#etag').val(); var oErr = oInput.closest('.form_box').next('.err_txt'); var empTxt = '請(qǐng)輸入'+oInput.attr('placeholder')+'!'; var errTxt = '請(qǐng)輸入正確的'+oInput.attr('placeholder')+'!'; var pattern; if(inputVal==""){ if(!telInput){ errFun(oErr,empTxt); } return false; }else { switch (oType){ case 'login_mobile': pattern = /^1[3456789]\d{9}$/; if(inputVal.length==11) { $.ajax({ url: '/login/checkmobile', type: "post", dataType: "json", data: { mobile: inputVal, etag: oEtag, page_ur: window.location.href, page_referer: document.referrer }, success: function (data) { } }); } break; case 'login_yzm': pattern = /^\d{6}$/; break; } if(oType=='login_mobile'){ } if(!!validateFun(pattern,inputVal)){ errFun(oErr,'') if(telInput){ $('.getcheckcode').removeClass('dis'); } }else { if(!telInput) { errFun(oErr, errTxt); }else { $('.getcheckcode').addClass('dis'); } return false; } } return true; } function errFun(obj,msg) { obj.html(msg); if(msg==''){ $('.login_submit').removeClass('dis'); }else { $('.login_submit').addClass('dis'); } } function validateFun(pat,val) { return pat.test(val); }