
全面闡述用戶畫像數(shù)據(jù)建模方法
從1991年Tim Berners-Lee發(fā)明了萬維網(wǎng)(World Wide Web)開始,到20年后2011年,互聯(lián)網(wǎng)真正走向了一個(gè)新的里程碑,進(jìn)入了“大數(shù)據(jù)時(shí)代”。經(jīng)歷了12、13兩年熱炒之后,人們逐漸冷靜下來,更加聚焦于如何利用大數(shù)據(jù)挖掘潛在的商業(yè)價(jià)值,如何在企業(yè)中實(shí)實(shí)在在的應(yīng)用大數(shù)據(jù)技術(shù)。伴隨著大數(shù)據(jù)應(yīng)用的討論、創(chuàng)新,個(gè)性化技術(shù)成為了一個(gè)重要落地點(diǎn)。相比傳統(tǒng)的線下會(huì)員管理、問卷調(diào)查、購物籃分析,大數(shù)據(jù)"數(shù)據(jù)分析師"第一次使得企業(yè)能夠通過互聯(lián)網(wǎng)便利地獲取用戶更為廣泛的反饋信息,為進(jìn)一步精準(zhǔn)、快速地分析用戶行為習(xí)慣、消費(fèi)習(xí)慣等重要商業(yè)信息,提供了足夠的數(shù)據(jù)基礎(chǔ)。伴隨著對(duì)人的了解逐步深入,一個(gè)概念悄然而生:用戶畫像(UserProfile),完美地抽象出一個(gè)用戶的信息全貌,可以看作企業(yè)應(yīng)用大數(shù)據(jù)的根基。
一、什么是用戶畫像?
男,31歲,已婚,收入1萬以上,愛美食,團(tuán)購達(dá)人,喜歡紅酒配香煙。
這樣一串描述即為用戶畫像的典型案例。如果用一句話來描述,即:用戶信息標(biāo)簽化。
如果用一幅圖來展現(xiàn),即:
二、為什么需要用戶畫像
用戶畫像的核心工作是為用戶打標(biāo)簽,打標(biāo)簽的重要目的之一是為了讓人能夠理解并且方便計(jì)算機(jī)處理,如,可以做分類統(tǒng)計(jì):喜歡紅酒的用戶有多少?喜歡紅酒的人群中,男、女比例是多少?
也可以做數(shù)據(jù)分析或數(shù)據(jù)挖掘工作:利用關(guān)聯(lián)規(guī)則計(jì)算,喜歡紅酒的人通常喜歡什么運(yùn)動(dòng)品牌?利用聚類算法分析,喜歡紅酒的人年齡段分布情況?
大數(shù)據(jù)處理,離不開計(jì)算機(jī)的運(yùn)算,標(biāo)簽提供了一種便捷的方式,使得計(jì)算機(jī)能夠程序化處理與人相關(guān)的信息,甚至通過算法、模型能夠“理解” 人。當(dāng)計(jì)算機(jī)具備這樣的能力后,無論是搜索引擎、推薦引擎、廣告投放等各種應(yīng)用領(lǐng)域,都將能進(jìn)一步提升精準(zhǔn)度,提高信息獲取的效率。
三、如何構(gòu)建用戶畫像
一個(gè)標(biāo)簽通常是人為規(guī)定的高度精煉的特征標(biāo)識(shí),如年齡段標(biāo)簽:25~35歲,地域標(biāo)簽:北京,標(biāo)簽呈現(xiàn)出兩個(gè)重要特征:語義化,人能很方便地理解每個(gè)標(biāo)簽含義。這也使得用戶畫像模型具備實(shí)際意義。能夠較好的滿足業(yè)務(wù)需求。如,判斷用戶偏好。短文本,每個(gè)標(biāo)簽通常只表示一種含義,標(biāo)簽本身無需再做過多文本分析等預(yù)處理工作,這為利用機(jī)器提取標(biāo)準(zhǔn)化信息提供了便利。
人制定標(biāo)簽規(guī)則,并能夠通過標(biāo)簽快速讀出其中的信息,機(jī)器方便做標(biāo)簽提取、聚合分析。所以,用戶畫像,即:用戶標(biāo)簽,向我們展示了一種樸素、簡潔的方法用于描述用戶信息。
3.1 數(shù)據(jù)源分析
構(gòu)建用戶畫像是為了還原用戶信息,因此數(shù)據(jù)來源于:所有用戶相關(guān)的數(shù)據(jù)。
對(duì)于用戶相關(guān)數(shù)據(jù)的分類,引入一種重要的分類思想:封閉性的分類方式。如,世界上分為兩種人,一種是學(xué)英語的人,一種是不學(xué)英語的人;客戶分三類,高價(jià)值客戶,中價(jià)值客戶,低價(jià)值客戶;產(chǎn)品生命周期分為,投入期、成長期、成熟期、衰退期…所有的子分類將構(gòu)成了類目空間的全部集合。
這樣的分類方式,有助于后續(xù)不斷枚舉并迭代補(bǔ)充遺漏的信息維度。不必?fù)?dān)心架構(gòu)上對(duì)每一層分類沒有考慮完整,造成維度遺漏留下擴(kuò)展性隱患。另外,不同的分類方式根據(jù)應(yīng)用場景,業(yè)務(wù)需求的不同,也許各有道理,按需劃分即可。
本文將用戶數(shù)據(jù)劃分為靜態(tài)信息數(shù)據(jù)、動(dòng)態(tài)信息數(shù)據(jù)兩大類。
靜態(tài)信息數(shù)據(jù)
用戶相對(duì)穩(wěn)定的信息,如圖所示,主要包括人口屬性、商業(yè)屬性等方面數(shù)據(jù)。這類信息,自成標(biāo)簽,如果企業(yè)有真實(shí)信息則無需過多建模預(yù)測,更多的是數(shù)據(jù)清洗工作,因此這方面信息的數(shù)據(jù)建模不是本篇文章重點(diǎn)。
動(dòng)態(tài)信息數(shù)據(jù)
用戶不斷變化的行為信息,如果存在上帝,每一個(gè)人的行為都在時(shí)刻被上帝那雙無形的眼睛監(jiān)控著,廣義上講,一個(gè)用戶打開網(wǎng)頁,買了一個(gè)杯子;與該用戶傍晚溜了趟狗,白天取了一次錢,打了一個(gè)哈欠等等一樣都是上帝眼中的用戶行為。當(dāng)行為集中到互聯(lián)網(wǎng),乃至電商,用戶行為就會(huì)聚焦很多,如上圖所示:瀏覽凡客首頁、瀏覽休閑鞋單品頁、搜索帆布鞋、發(fā)表關(guān)于鞋品質(zhì)的微博、贊“雙十一大促給力”的微博消息。等等均可看作互聯(lián)網(wǎng)用戶行為。
本篇文章以互聯(lián)網(wǎng)電商用戶,為主要分析對(duì)象,暫不考慮線下用戶行為數(shù)據(jù)(分析方法雷同,只是數(shù)據(jù)獲取途徑,用戶識(shí)別方式有些差異)。
在互聯(lián)網(wǎng)上,用戶行為,可以看作用戶動(dòng)態(tài)信息的唯一數(shù)據(jù)來源。如何對(duì)用戶行為數(shù)據(jù)構(gòu)建數(shù)據(jù)模型,分析出用戶標(biāo)簽,將是本文著重介紹的內(nèi)容。
3.2 目標(biāo)分析
用戶畫像的目標(biāo)是通過分析用戶行為,最終為每個(gè)用戶打上標(biāo)簽,以及該標(biāo)簽的權(quán)重。如,紅酒 0.8、李寧 0.6。
標(biāo)簽,表征了內(nèi)容,用戶對(duì)該內(nèi)容有興趣、偏好、需求等等。
權(quán)重,表征了指數(shù),用戶的興趣、偏好指數(shù),也可能表征用戶的需求度,可以簡單的理解為可信度,概率。
3.3 數(shù)據(jù)建模方法
下面內(nèi)容將詳細(xì)介紹,如何根據(jù)用戶行為,構(gòu)建模型產(chǎn)出標(biāo)簽、權(quán)重。一個(gè)事件模型包括:時(shí)間、地點(diǎn)、人物三個(gè)要素。每一次用戶行為本質(zhì)上是一次隨機(jī)事件,可以詳細(xì)描述為:什么用戶,在什么時(shí)間,什么地點(diǎn),做了什么事。
什么用戶:關(guān)鍵在于對(duì)用戶的標(biāo)識(shí),用戶標(biāo)識(shí)的目的是為了區(qū)分用戶、單點(diǎn)定位。
以上列舉了互聯(lián)網(wǎng)主要的用戶標(biāo)識(shí)方法,獲取方式由易到難。視企業(yè)的用戶粘性,可以獲取的標(biāo)識(shí)信息有所差異。數(shù)據(jù)分析師培訓(xùn)
什么時(shí)間:時(shí)間包括兩個(gè)重要信息,時(shí)間戳+時(shí)間長度。時(shí)間戳,為了標(biāo)識(shí)用戶行為的時(shí)間點(diǎn),如,1395121950(精度到秒),1395121950.083612(精度到微秒),通常采用精度到秒的時(shí)間戳即可。因?yàn)槲⒚氲臅r(shí)間戳精度并不可靠。瀏覽器時(shí)間精度,準(zhǔn)確度最多也只能到毫秒。時(shí)間長度,為了標(biāo)識(shí)用戶在某一頁面的停留時(shí)間。
什么地點(diǎn):用戶接觸點(diǎn),Touch Point。對(duì)于每個(gè)用戶接觸點(diǎn)。潛在包含了兩層信息:網(wǎng)址+ 內(nèi)容。網(wǎng)址:每一個(gè)url鏈接(頁面/屏幕),即定位了一個(gè)互聯(lián)網(wǎng)頁面地址,或者某個(gè)產(chǎn)品的特定頁面??梢允?span>PC上某電商網(wǎng)站的頁面url,也可以是手機(jī)上的微博,微信等應(yīng)用某個(gè)功能頁面,某款產(chǎn)品應(yīng)用的特定畫面。如,長城紅酒單品頁,微信訂閱號(hào)頁面,某游戲的過關(guān)頁。
內(nèi)容:每個(gè)url網(wǎng)址(頁面/屏幕)中的內(nèi)容??梢允菃纹返南嚓P(guān)信息:類別、品牌、描述、屬性、網(wǎng)站信息等等。如,紅酒,長城,干紅,對(duì)于每個(gè)互聯(lián)網(wǎng)接觸點(diǎn),其中網(wǎng)址決定了權(quán)重;內(nèi)容決定了標(biāo)簽。
注:接觸點(diǎn)可以是網(wǎng)址,也可以是某個(gè)產(chǎn)品的特定功能界面。如,同樣一瓶礦泉水,超市賣1元,火車上賣3元,景區(qū)賣5元。商品的售賣價(jià)值,不在于成本,更在于售賣地點(diǎn)。標(biāo)簽均是礦泉水,但接觸點(diǎn)的不同體現(xiàn)出了權(quán)重差異。這里的權(quán)重可以理解為用戶對(duì)于礦泉水的需求程度不同。即,愿意支付的價(jià)值不同。
標(biāo)簽 權(quán)重
礦泉水 1 // 超市
礦泉水 3 // 火車
礦泉水 5 // 景區(qū)
類似的,用戶在京東商城瀏覽紅酒信息,與在品尚紅酒網(wǎng)瀏覽紅酒信息,表現(xiàn)出對(duì)紅酒喜好度也是有差異的。這里的關(guān)注點(diǎn)是不同的網(wǎng)址,存在權(quán)重差異,權(quán)重模型的構(gòu)建,需要根據(jù)各自的業(yè)務(wù)需求構(gòu)建。
所以,網(wǎng)址本身表征了用戶的標(biāo)簽偏好權(quán)重。網(wǎng)址對(duì)應(yīng)的內(nèi)容體現(xiàn)了標(biāo)簽信息。
什么事:用戶行為類型,對(duì)于電商有如下典型行為:瀏覽、添加購物車、搜索、評(píng)論、購買、點(diǎn)擊贊、收藏 等等。
不同的行為類型,對(duì)于接觸點(diǎn)的內(nèi)容產(chǎn)生的標(biāo)簽信息,具有不同的權(quán)重。如,購買權(quán)重計(jì)為5,瀏覽計(jì)為1
紅酒 1 // 瀏覽紅酒
紅酒 5 // 購買紅酒
綜合上述分析,用戶畫像的數(shù)據(jù)模型,可以概括為下面的公式:用戶標(biāo)識(shí) + 時(shí)間 + 行為類型 + 接觸點(diǎn)(網(wǎng)址+內(nèi)容),某用戶因?yàn)樵谑裁磿r(shí)間、地點(diǎn)、做了什么事。所以會(huì)打上**標(biāo)簽。
用戶標(biāo)簽的權(quán)重可能隨時(shí)間的增加而衰減,因此定義時(shí)間為衰減因子r,行為類型、網(wǎng)址決定了權(quán)重,內(nèi)容決定了標(biāo)簽,進(jìn)一步轉(zhuǎn)換為公式:
標(biāo)簽權(quán)重=衰減因子×行為權(quán)重×網(wǎng)址子權(quán)重
如:用戶A,昨天在品尚紅酒網(wǎng)瀏覽一瓶價(jià)值238元的長城干紅葡萄酒信息。
? 標(biāo)簽:紅酒,長城
? 時(shí)間:因?yàn)槭亲蛱斓男袨?,假設(shè)衰減因子為:r=0.95
? 行為類型:瀏覽行為記為權(quán)重1
? 地點(diǎn):品尚紅酒單品頁的網(wǎng)址子權(quán)重記為 0.9(相比京東紅酒單品頁的0.7)
假設(shè)用戶對(duì)紅酒出于真的喜歡,才會(huì)去專業(yè)的紅酒網(wǎng)選購,而不再綜合商城選購。
則用戶偏好標(biāo)簽是:紅酒,權(quán)重是0.95*0.7 * 1=0.665,即,用戶A:紅酒 0.665、長城0.665。
上述模型權(quán)重值的選取只是舉例參考,具體的權(quán)重值需要根據(jù)業(yè)務(wù)需求二次建模,這里強(qiáng)調(diào)的是如何從整體思考,去構(gòu)建用戶畫像模型,進(jìn)而能夠逐步細(xì)化模型。
四、總結(jié):
本文并未涉及具體算法,更多的是闡述了一種分析思想,在計(jì)劃構(gòu)建用戶畫像時(shí),能夠給您提供一個(gè)系統(tǒng)性、框架性的思維指導(dǎo)。
核心在于對(duì)用戶接觸點(diǎn)的理解,接觸點(diǎn)內(nèi)容直接決定了標(biāo)簽信息。內(nèi)容地址、行為類型、時(shí)間衰減,決定了權(quán)重模型是關(guān)鍵,權(quán)重值本身的二次建模則是水到渠成的進(jìn)階。模型舉例偏重電商,但其實(shí),可以根據(jù)產(chǎn)品的不同,重新定義接觸點(diǎn)。
比如影視產(chǎn)品,我看了一部電影《英雄本色》,可能產(chǎn)生的標(biāo)簽是:周潤發(fā) 0.6、槍戰(zhàn) 0.5、港臺(tái) 0.3。
最后,接觸點(diǎn)本身并不一定有內(nèi)容,也可以泛化理解為某種閾值,某個(gè)行為超過多少次,達(dá)到多長時(shí)間等。
比如游戲產(chǎn)品,典型接觸點(diǎn)可能會(huì)是,關(guān)鍵任務(wù),關(guān)鍵指數(shù)(分?jǐn)?shù))等等。如,積分超過1萬分,則標(biāo)記為鉆石級(jí)用戶。鉆石用戶 1.0。
百分點(diǎn)現(xiàn)已全面應(yīng)用用戶畫像技術(shù)于推薦引擎中,在對(duì)某電商客戶,針對(duì)活動(dòng)頁新訪客的應(yīng)用中,依靠用戶畫像產(chǎn)生的個(gè)性化效果,對(duì)比熱銷榜,推薦效果有顯著提升:推薦欄點(diǎn)擊率提升27%, 訂單轉(zhuǎn)化率提升34%。數(shù)據(jù)分析師培訓(xùn)
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10