
大數(shù)據(jù)對企業(yè)價值,從“道”的層面來論述
本文更多是從比較高的層面,也許就是我們說的“道”的層面去思考大數(shù)據(jù)如何對于一個企業(yè)產生價值。有很多觀點的值得借鑒,值得大家去深入思考的,本文更多是一個方向,一個比較“虛”的描述,如果你從事一段時間的大數(shù)據(jù)工作,或者數(shù)據(jù)分析相關工作,相信你對本文有一定體會。
但是,大數(shù)據(jù)價值的實現(xiàn)與真正“落地”,絕對不是一句簡單的事情。一個企業(yè)如何讓【大】數(shù)據(jù)產生價值,絕對不是一句口號。真的需企業(yè)方方面面去支持。前期在技術上就需要投入大量資源,例如:大數(shù)據(jù)相關開發(fā)人員,數(shù)據(jù)分析人員,各種機器。
數(shù)據(jù)基礎的建設,僅僅只是最基礎的工作,真正要讓數(shù)據(jù)對企業(yè)產生商業(yè)價值,不讓對數(shù)據(jù)的基礎投入成為擺設,則需要是公司的“文化”支持,不然會變成光是貼在墻上的口號:
“讓數(shù)據(jù)說話!依據(jù)數(shù)據(jù)行事!”
“所有決策都需要數(shù)據(jù)支持!”
數(shù)據(jù)要產生價值要企業(yè)“文化”來澆灌,數(shù)據(jù)需要滲透企業(yè)“靈魂”中,這會涉及到企業(yè)很多人工作方式,流程,習慣,思維的轉化。這往往是很“痛苦”的。一起看看這篇文章吧!
一、大數(shù)據(jù)使企業(yè)真正有能力從以自我為中心改變?yōu)橐钥蛻魹橹行?/span>
企業(yè)是為客戶而生,目的是為股東獲得利潤。只有服務好客戶,才能獲得利潤。但過去,很多企業(yè)是沒有能力做到以客戶為中心的,原因就是相應客戶的信息量不大,挖掘不夠,系統(tǒng)也不支持,目前的保險業(yè)就是一個典型。大數(shù)據(jù)的使用能夠使對企業(yè)的經營對象從客戶的粗略歸納(就是所謂提煉歸納的“客戶群”)還原成一個個活生生的客戶,這樣經營就有針對性,對客戶的服務就更好,投資效率就更高。
二、大數(shù)據(jù)一定程度上將顛覆了企業(yè)的傳統(tǒng)管理方式
現(xiàn)代企業(yè)的管理方式是來源于對軍隊的模仿,依賴于層層級級的組織和嚴格的流程,依賴信息的層層匯集、收斂來制定正確的決策,再通過決策在組織的傳遞與分解,以及流程的規(guī)范,確保決策得到貫徹,確保每一次經營活動都有質量保證,也確保一定程度上對風險的規(guī)避。過去這是一種有用而笨拙的方式。在大數(shù)據(jù)時代,我們可能重構企業(yè)的管理方式,通過大數(shù)據(jù)的分析與挖掘,大量的業(yè)務本身就可以自決策,不必要依靠膨大的組織和復雜的流程。大家都是基于大數(shù)據(jù)來決策,都是依賴于既定的規(guī)則來決策,是高高在上的CEO決策,還是一線人員決策,本身并無大的區(qū)別,那么企業(yè)是否還需要如此多層級的組織和復雜的流程呢?
三、大數(shù)據(jù)另外一個重大的作用是改變了商業(yè)邏輯,提供了從其他視角直達答案的可能性
現(xiàn)在人的思考或者是企業(yè)的決策,事實上都是一種邏輯的力量在主導起作用。我們去調研,去收集數(shù)據(jù),去進行歸納總結,最后形成自己的推斷和決策意見,這是一個觀察、思考、推理、決策的商業(yè)邏輯過程。人和組織的邏輯形成是需要大量的學習、培訓與實踐,代價是非常巨大的。但是否這是唯一的道路呢?大數(shù)據(jù)給了我們其他的選擇,就是利用數(shù)據(jù)的力量,直接獲得答案。就好像我們學習數(shù)學,小時候學九九乘法表,中學學幾何,大學還學微積分,碰到一道難題,我們是利用了多年學習沉淀的經驗來努力求解,但我們還有一種方法,在網(wǎng)上直接搜索是不是有這樣的題目,如果有,直接抄答案就好了。很多人就會批評說,這是***,是作弊。但我們?yōu)槭裁匆獙W習啊?不就是為了解決問題嘛。如果我任何時候都可以搜索到答案,都可以用最省力的方法找到最佳答案,這樣的搜索難道不可以是一條光明大道嗎?換句話說,為了得到“是什么”,我們不一定要理解“為什么”。我們不是否定邏輯的力量,但是至少我們有一種新的巨大力量可以依賴,這就是未來大數(shù)據(jù)的力量。
四、通過大數(shù)據(jù),我們可能有全新的視角來發(fā)現(xiàn)新的商業(yè)機會和重構新的商業(yè)模式
我們現(xiàn)在看這個世界,比如分析家中食品腐敗,主要就是依賴于我們的眼睛再加上我們的經驗,但如果我們有一臺顯微鏡,我們一下就看到壞細菌,那么分析起來完全就不一樣了。大數(shù)據(jù)就是我們的顯微鏡,它可以讓我們從全新視角來發(fā)現(xiàn)新的商業(yè)機會,并可能重構商業(yè)模型。我們的產品設計可能不一樣了,很多事情不用猜了,客戶的習慣和偏好一目了然,我們的設計就能輕易命中客戶的心窩;我們的營銷也完全不同了,我們知道客戶喜歡什么、討厭什么,更有針對性。特別是顯微鏡再加上廣角鏡,我們就有更多全新的視野了。這個廣角鏡就是跨行業(yè)的數(shù)據(jù)流動,使我們過去看不到的東西都能看到了,比如前面所述的汽車案例,開車是開車,保險是保險,本來不相關,但當我們把開車的大數(shù)據(jù)傳遞到保險公司,那整個保險公司的商業(yè)模式就全變了,完全重構了。
五、數(shù)據(jù)發(fā)展對IT本身技術架構的革命性影響
最后一點,我想談的是大數(shù)據(jù)發(fā)展對IT本身技術架構的革命性影響。大數(shù)據(jù)的根基是IT系統(tǒng)。我們現(xiàn)代企業(yè)的IT系統(tǒng)基本上是建立在IOE(IBM小型機、Oracle數(shù)據(jù)庫、EMC存儲)+Cisco模型基礎上的,這樣的模型是Scale-UP型的架構,在解決既定模型下一定數(shù)據(jù)量的業(yè)務流程是適配的,但如果是大數(shù)據(jù)時代,很快會面臨成本、技術和商業(yè)模式的問題,大數(shù)據(jù)對IT的需求很快就會超越了現(xiàn)有廠商架構的技術頂點,超大數(shù)據(jù)增長將帶來IT支出增長之間的線性關系,使企業(yè)難以承受。因此,目前在行業(yè)中提出的去IOE趨勢,利用Scale-out架構+開源軟件對Scale-up架構+私有軟件的取代,本質是大數(shù)據(jù)業(yè)務模型所帶來的,也就是說大數(shù)據(jù)將驅動IT產業(yè)新一輪的架構性變革。去IOE潮流中的所謂國家安全因素,完全是次要的。
所以,美國人說,大數(shù)據(jù)是資源,和大油田、大煤礦一樣,可以源源不斷挖出大財富。而且和一般資源不一樣,它是可再生的,是越挖越多、越挖越值錢的,這是反自然規(guī)律的。對企業(yè)如此,對行業(yè)、對國家也是這樣,對人同樣如此。這樣的東西誰不喜歡呢?因此,大數(shù)據(jù)這么熱門,是完全有道理的。CDA數(shù)據(jù)分析師學習
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓練與驗證損失驟升:機器學習訓練中的異常診斷與解決方案 在機器學習模型訓練過程中,“損失曲線” 是反映模型學習狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結構數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結構數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉換:從基礎用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內涵、作用與應用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結構數(shù)據(jù)特征價值的專業(yè)核心 表結構數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結構化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應用 在數(shù)據(jù)分析與統(tǒng)計學領域,假設檢驗是驗證研究假設、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結構數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結構數(shù)據(jù)(以 “行 - 列” 存儲的結構化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結構數(shù)據(jù)價值的核心操盤手 表格結構數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務邏輯:從規(guī)則拆解到數(shù)據(jù)把關的實戰(zhàn)指南 在業(yè)務系統(tǒng)落地過程中,“業(yè)務邏輯” 是連接 “需求設計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11