
基礎(chǔ)電商數(shù)據(jù)分析方法:分拆跟著用戶走_(dá)數(shù)據(jù)分析師考試
在理解了要選擇怎樣的指標(biāo)來衡量各項(xiàng)業(yè)務(wù)之后,我們可以對(duì)業(yè)務(wù)有一個(gè)客觀和全面的把握,可是數(shù)字本身無法告訴我們發(fā)生了什么事情,怎樣可以改進(jìn)。為了得到更深入的信息,我們需要用到很多的分析工具,這里我們只介紹最常用和基礎(chǔ)的分析方法:拆分。
一、看數(shù)據(jù)分布
最簡(jiǎn)單的拆分方法就是不看平均值,看數(shù)據(jù)分布。因?yàn)榉?是“總和”或者“平均”類的統(tǒng)計(jì)數(shù)據(jù)都會(huì)丟失掉很多重要的信息。例如李嘉誠(chéng)來我們公司參觀,這一時(shí)間我們公司辦公室里的“平均資產(chǎn)”就會(huì)因?yàn)槔罴握\(chéng)一個(gè)人 被抬高到人均幾億身家。如果有人根據(jù)這個(gè)“平均資產(chǎn)”數(shù)據(jù)來判定說我們辦公室的人都是豪華游艇的潛在顧客,這自然是荒謬的。
可實(shí)際上,我們每天都在做著類似的判斷,比如當(dāng)我們聽到說顧客“平均在線時(shí)間”是3分34秒,就可能根據(jù)這個(gè)時(shí)間來進(jìn)行業(yè)務(wù)決策,例如設(shè)置“停留時(shí)間超過3分34秒為高價(jià)值流量”,或者設(shè)置系統(tǒng),在用戶停留了3分34秒還沒有下單的話就彈出在線客服服務(wù)窗口。我們?cè)O(shè)置這些時(shí)間點(diǎn)的根據(jù)是“平均停留時(shí)間”,在我們的想象里,我們的每個(gè)顧客都有著“平均的”表現(xiàn),停留時(shí)間大致都是3分34秒,可實(shí)際上真正的顧客訪問時(shí)間有長(zhǎng)有短,差別巨大:
從上圖我們可以看到絕大部分訪問時(shí)間非常短暫,而少數(shù)人訪問了大量時(shí)間,綜合起來平均停留時(shí)間3分多,用3分34秒來做為一個(gè)關(guān)鍵判定點(diǎn)是不合適的。
再舉一個(gè)例子,比如我們看到上個(gè)月平均訂單金額500元/單,這個(gè)月也是500元/單,可能會(huì)覺得數(shù)字沒有變化??墒菍?shí)際上有可能上個(gè)月5萬單都是400~600元,而這個(gè)月5萬單則是2萬單300元,2萬單400元,5千單500元,5000單超過2500元 ——客戶購(gòu)買習(xí)慣已經(jīng)發(fā)生了巨大變化,一方面可能是客戶訂單在變?。赡苁且?yàn)楫a(chǎn)品單價(jià)下降,采購(gòu)數(shù)量減少,或者客戶選擇了比較便宜的替代品),另一方面 出現(xiàn)了一些相對(duì)較大的訂單(可能是中小企業(yè)采購(gòu),或者是網(wǎng)站擴(kuò)充產(chǎn)品線見效了)?!磾?shù)據(jù)分布可以讓我們更容易發(fā)現(xiàn)這些潛在的變化,及時(shí)的做出應(yīng)對(duì)。
二、拆因子
很多時(shí)候我們很難直接從數(shù)據(jù)變化中分析出具體的原因,這時(shí)可以考慮拆分因子,將問題一步步細(xì)化找尋原因。
例如網(wǎng)站轉(zhuǎn)化率下降,我們要找原因。因?yàn)椤稗D(zhuǎn)化率”=“訂單”/“流 量”,所以“轉(zhuǎn)化率”下降的原因很可能是“訂單量下降”,“流量上升”,或者兩者皆是。按照這個(gè)思路我們可能發(fā)現(xiàn)主要的原因是“流量上升”和“訂單量升幅 不明顯”,那么下面我們就可以來拆解“流量”的構(gòu)成,例如拆成“直接訪問流量”、“廣告訪問流量”和“搜索引擎訪問流量”再看具體是哪部分的流量發(fā)生了變 化,接下來再找原因。
這時(shí)我們可能看到說是搜索引擎訪問流量上升,那就可以再進(jìn)一步分析是付費(fèi)關(guān)鍵詞部分上升,還是自然搜索流量上升,如果是自然流量,是 品牌(或者網(wǎng)站名相關(guān))關(guān)鍵詞流量上升,還是其他詞帶來的流量上升——假如最后發(fā)現(xiàn)是非品牌類關(guān)鍵詞帶來的流量上升,那么繼續(xù)尋找原因——市場(chǎng)變化(淡季旺季之類),競(jìng)爭(zhēng)對(duì)手行動(dòng),還是自身改變。假如剛好在最近把產(chǎn)品頁(yè)面改版過,就可以查一下是不是因?yàn)楦陌孀屗阉饕媸珍涀兌?,?quán)重變高。接下來再分析自己到底哪里做對(duì)了幫助網(wǎng)站SEO了(比如把頁(yè)面導(dǎo)航欄從圖片換成了文字),把經(jīng)驗(yàn)記下來為以后改版提供參考;另一方面還要分析哪里沒做好(因?yàn)樾略隽髁康遣]有相應(yīng)增加太多銷售),研究怎樣讓“產(chǎn)品頁(yè)面”更具吸引力——因?yàn)閷?duì)很多搜索引擎流量來說,他們對(duì)網(wǎng)站的第一印象是產(chǎn)品頁(yè)面,而不是首頁(yè)。
三、拆步驟
還有些時(shí)候,我們通過拆分步驟來獲取更多信息。
舉兩個(gè)例子:
第一個(gè)例子:兩個(gè)營(yíng)銷活動(dòng),帶來一樣多的流量,一樣多的銷售,是不是說明兩個(gè)營(yíng)銷活動(dòng)效率差不多?
如果我們把每個(gè)營(yíng)銷活動(dòng)的流量拆細(xì)去看每一步,就會(huì)發(fā)現(xiàn)不一樣的地方。營(yíng)銷活動(dòng)B雖然和營(yíng)銷活動(dòng)A帶來了等量的流量,可是這部分流量對(duì)產(chǎn)品更感興趣,看完著陸頁(yè)之后更多的人去看了產(chǎn)品頁(yè)面。可惜的是雖然看產(chǎn)品的人很多,最后轉(zhuǎn)化率不高,訂單數(shù)和營(yíng)銷活動(dòng) A一樣。
這里面還可以再深入分析(結(jié)合之前提到的分析方法,和下一章要說的細(xì)分方法),但是光憑直覺,也可以簡(jiǎn)單的得出一些猜測(cè)來,例如兩個(gè)營(yíng)銷活動(dòng)的顧客習(xí)慣不太一樣,營(yíng)銷活動(dòng) B的著陸頁(yè)設(shè)計(jì)更好,營(yíng)銷活動(dòng) B的顧客更符合我們的目標(biāo)客戶描述、更懂產(chǎn)品——但是我們的價(jià)格沒有優(yōu)勢(shì)等等這些猜想是我們深入進(jìn)行分析,得出行動(dòng)方案的起點(diǎn)。至少,它可以幫助我們更快的累計(jì)經(jīng)驗(yàn),下次設(shè)計(jì)營(yíng)銷活動(dòng)的時(shí)候會(huì)更有的放矢,而不是僅僅寫一個(gè)簡(jiǎn)單report說這兩個(gè)營(yíng)銷活動(dòng)效果一樣就結(jié)案了。(注:這是個(gè)簡(jiǎn)化的例子,實(shí)際上還可以分更多層)
第二個(gè)例子可能更常見一些,比如網(wǎng)站轉(zhuǎn)化率下降,我們可以拆成這樣的漏斗:
這樣拆好之后,更能清楚地看到到底是哪一步的轉(zhuǎn)化率發(fā)生了變化。有可能是訪客質(zhì)量下降,都在著陸頁(yè)流失了,也可能是“購(gòu)物車–>登錄”流失了(如果你把運(yùn)費(fèi)放到購(gòu)物車中計(jì)算,很可能就看到這一步流失率飆升),這樣拆細(xì)之后更方便我們分析。
曾經(jīng)有一個(gè)例子就是轉(zhuǎn)化率下降,市場(chǎng)部查流量質(zhì)量發(fā)現(xiàn)沒問題,產(chǎn)品經(jīng)理查價(jià)格競(jìng)爭(zhēng)力也沒問題——最后發(fā)現(xiàn)是技術(shù)部為了防止惡意注冊(cè),在登錄頁(yè)面加了驗(yàn)證碼(而且那個(gè)驗(yàn)證碼極度復(fù)雜),降低了“登錄頁(yè)面–>填寫訂單信息“這一步的轉(zhuǎn)化率。
四、細(xì)分用戶族群
很多時(shí)候,我們需要把用戶行為數(shù)據(jù)拆分開,看不同族群的人有什么不同的表現(xiàn),通過比較異同來獲取更多的洞察。從實(shí)踐出發(fā),客戶族群細(xì)分的方法主要有三種:
按照客戶屬性細(xì)分:根據(jù)客戶“是誰(shuí)”來劃分族群,例如把客戶分成“新客戶”和“老客戶”。按照客戶行為來細(xì)分:根據(jù)客戶上網(wǎng)行為來細(xì)分,例如把客戶分成“瀏覽服裝專區(qū)的客戶”和“瀏覽數(shù)碼專區(qū)的客戶”。很多時(shí)候“根據(jù)客戶行為”和“根據(jù)客戶屬性”這兩者會(huì)混在一起,比如一個(gè)客戶的行為是“每個(gè)月都來買一次東西而且只買最貴的”,可能我們就會(huì)在數(shù)據(jù)庫(kù)里給他標(biāo)記上“有錢人”,之后“有錢人”就成了這個(gè)客戶的屬性之一。按照最終結(jié)果來細(xì)分:其實(shí)是“按照客戶行為來細(xì)分”的一種,但是它適用性非常廣,而且用起來非常方便,所以單獨(dú)拿出來講一下。
對(duì)于這個(gè)細(xì)分方法,本質(zhì)上就是根據(jù)結(jié)果把流量分成“好人”和“壞人”,然后一路比較“好人”和“壞人”從接觸到最后轉(zhuǎn)化或離開這整個(gè)過程中所經(jīng)歷過的事情有沒有什么顯著的不同,如果有,則進(jìn)一步深入考慮這些不同點(diǎn)是否就是造成他們一些是“好人”一些是”壞人“的原因,再想辦法優(yōu)化這些經(jīng)歷,盡可能增加”好人“這個(gè)族群。
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
解析 response.text 與 response.content 的核心區(qū)別 在網(wǎng)絡(luò)數(shù)據(jù)請(qǐng)求與處理的場(chǎng)景中,開發(fā)者經(jīng)常需要從服務(wù)器返回的響應(yīng)中提取數(shù) ...
2025-07-22解析神經(jīng)網(wǎng)絡(luò)中 Softmax 函數(shù)的核心作用 在神經(jīng)網(wǎng)絡(luò)的發(fā)展歷程中,激活函數(shù)扮演著至關(guān)重要的角色,它們?yōu)榫W(wǎng)絡(luò)賦予了非線性能力, ...
2025-07-22CDA數(shù)據(jù)分析師證書考取全攻略 一、了解 CDA 數(shù)據(jù)分析師認(rèn)證 CDA 數(shù)據(jù)分析師認(rèn)證是一套科學(xué)化、專業(yè)化、國(guó)際化的人才考核標(biāo)準(zhǔn), ...
2025-07-22左偏態(tài)分布轉(zhuǎn)正態(tài)分布:方法、原理與實(shí)踐 左偏態(tài)分布轉(zhuǎn)正態(tài)分布:方法、原理與實(shí)踐 在統(tǒng)計(jì)分析、數(shù)據(jù)建模和科學(xué)研究中,正態(tài)分 ...
2025-07-22你是不是也經(jīng)常刷到別人漲粉百萬、帶貨千萬,心里癢癢的,想著“我也試試”,結(jié)果三個(gè)月過去,粉絲不到1000,播放量慘不忍睹? ...
2025-07-21我是陳輝,一個(gè)創(chuàng)業(yè)十多年的企業(yè)主,前半段人生和“文字”緊緊綁在一起。從廣告公司文案到品牌策劃,再到自己開策劃?rùn)C(jī)構(gòu),我靠 ...
2025-07-21CDA 數(shù)據(jù)分析師的職業(yè)生涯規(guī)劃:從入門到卓越的成長(zhǎng)之路 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的當(dāng)下,數(shù)據(jù)已成為企業(yè)核心競(jìng)爭(zhēng)力的重要來源,而 CD ...
2025-07-21MySQL執(zhí)行計(jì)劃中rows的計(jì)算邏輯:從原理到實(shí)踐 MySQL 執(zhí)行計(jì)劃中 rows 的計(jì)算邏輯:從原理到實(shí)踐 在 MySQL 數(shù)據(jù)庫(kù)的查詢優(yōu)化中 ...
2025-07-21在AI滲透率超85%的2025年,企業(yè)生存之戰(zhàn)就是數(shù)據(jù)之戰(zhàn),CDA認(rèn)證已成為決定企業(yè)存續(xù)的生死線!據(jù)麥肯錫全球研究院數(shù)據(jù)顯示,AI驅(qū) ...
2025-07-2035歲焦慮像一把高懸的利刃,裁員潮、晉升無望、技能過時(shí)……當(dāng)職場(chǎng)中年危機(jī)與數(shù)字化浪潮正面交鋒,你是否發(fā)現(xiàn): 簡(jiǎn)歷投了10 ...
2025-07-20CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-18剛?cè)肼殘?chǎng)或是在職場(chǎng)正面臨崗位替代、技能更新、人機(jī)協(xié)作等焦慮的打工人,想要找到一條破解職場(chǎng)焦慮和升職瓶頸的系統(tǒng)化學(xué)習(xí)提升 ...
2025-07-182025被稱為“AI元年”,而AI,與數(shù)據(jù)密不可分。網(wǎng)易公司創(chuàng)始人丁磊在《AI思維:從數(shù)據(jù)中創(chuàng)造價(jià)值的煉金術(shù) ...
2025-07-18CDA 數(shù)據(jù)分析師:數(shù)據(jù)時(shí)代的價(jià)值挖掘者 在大數(shù)據(jù)席卷全球的今天,數(shù)據(jù)已成為企業(yè)核心競(jìng)爭(zhēng)力的重要組成部分。從海量數(shù)據(jù)中提取有 ...
2025-07-18SPSS 賦值后數(shù)據(jù)不顯示?原因排查與解決指南? 在 SPSS( Statistical Package for the Social Sciences)數(shù)據(jù)分析過程中,變量 ...
2025-07-18在 DBeaver 中利用 MySQL 實(shí)現(xiàn)表數(shù)據(jù)同步操作指南? ? 在數(shù)據(jù)庫(kù)管理工作中,將一張表的數(shù)據(jù)同步到另一張表是常見需求,這有助于 ...
2025-07-18數(shù)據(jù)分析師的技能圖譜:從數(shù)據(jù)到價(jià)值的橋梁? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,數(shù)據(jù)分析師如同 “數(shù)據(jù)翻譯官”,將冰冷的數(shù)字轉(zhuǎn)化為清晰的 ...
2025-07-17Pandas 寫入指定行數(shù)據(jù):數(shù)據(jù)精細(xì)化管理的核心技能? 在數(shù)據(jù)處理的日常工作中,我們常常需要面對(duì)這樣的場(chǎng)景:在龐大的數(shù)據(jù)集里精 ...
2025-07-17解碼 CDA:數(shù)據(jù)時(shí)代的通行證? 在數(shù)字化浪潮席卷全球的今天,當(dāng)企業(yè)決策者盯著屏幕上跳動(dòng)的數(shù)據(jù)曲線尋找增長(zhǎng)密碼,當(dāng)科研人員在 ...
2025-07-17CDA 精益業(yè)務(wù)數(shù)據(jù)分析:數(shù)據(jù)驅(qū)動(dòng)業(yè)務(wù)增長(zhǎng)的實(shí)戰(zhàn)方法論 在企業(yè)數(shù)字化轉(zhuǎn)型的浪潮中,“數(shù)據(jù)分析” 已從 “加分項(xiàng)” 成為 “必修課 ...
2025-07-16