
數(shù)據(jù)挖掘的10個常見問題_數(shù)據(jù)分析師考試
Data Mining 和統(tǒng)計分析有什么不同?
硬要去區(qū)分Data Mining和Statistics的差異其實是沒有太大意義的。一般將之定義為Data Mining技術(shù)的CART、CHAID或模糊計算等等理論方法,也都是由統(tǒng)計學(xué)者根據(jù)統(tǒng)計理論所發(fā)展衍生,換另一個角度看,Data Mining有相當(dāng)大的比重是由高等統(tǒng)計學(xué)中的多變量分析所支撐。
但是為什么Data Mining的出現(xiàn)會引發(fā)各領(lǐng)域的廣泛注意呢?主要原因在相較于傳統(tǒng)統(tǒng)計分析而言,Data Mining有下列幾項特性: 1.處理大量實際數(shù)據(jù)更強勢,且無須太專業(yè)的統(tǒng)計背景去使用Data Mining的工具; 2.數(shù)據(jù)分析趨勢為從大型數(shù)據(jù)庫抓取所需數(shù)據(jù)并使用專屬計算機分析軟件,Data Mining的工具更符合企業(yè)需求; 3. 純就理論的基礎(chǔ)點來看,Data Mining和統(tǒng)計分析有應(yīng)用上的差別,畢竟Data Mining目的是方便企業(yè)終端用戶使用而非給統(tǒng)計學(xué)家檢測用的。
二 Data Warehousing 和 Data Mining 的關(guān)系為何?
若將Data Warehousing(數(shù)據(jù)倉庫)比喻作礦坑,Data Mining就是深入礦坑采礦的工作。畢竟Data Mining不是一種無中生有的魔術(shù),也不是點石成金的煉金術(shù),若沒有夠豐富完整的數(shù)據(jù),是很難期待Data Mining能挖掘出什么有意義的信息的。 要將龐大的數(shù)據(jù)轉(zhuǎn)換成為有用的信息,必須先有效率地收集信息。隨著科技的進步,功能完善的數(shù)據(jù)庫系統(tǒng)就成了最好的收集數(shù)據(jù)的工具。數(shù)據(jù)倉庫,簡單地說,就是搜集來自其它系統(tǒng)的有用數(shù)據(jù),存放在一整合的儲存區(qū)內(nèi)。所以其實就是一個經(jīng)過處理整合,且容量特別大的關(guān)系型數(shù)據(jù)庫,用以儲存決策支持系統(tǒng)(Design Support System)所需的數(shù)據(jù),供決策支持或數(shù)據(jù)分析使用。從信息技術(shù)的角度來看,數(shù)據(jù)倉庫的目標(biāo)是在組織中,在正確的時間,將正確的數(shù)據(jù)交給正確的人。
許多人對于Data Warehousing和Data Mining時常混淆,不知如何分辨。其實,數(shù)據(jù)倉庫是數(shù)據(jù)庫技術(shù)的一個新主題,利用計算機系統(tǒng)幫助我們操作、計算和思考,讓作業(yè)方式改變,決策方式也跟著改變。 數(shù)據(jù)倉庫本身是一個非常大的數(shù)據(jù)庫,它儲存著由組織作業(yè)數(shù)據(jù)庫中整合而來的數(shù)據(jù),特別是指事務(wù)處理系統(tǒng)OLTP(On-Line Transactional Processing)所得來的數(shù)據(jù)。將這些整合過的數(shù)據(jù)置放于數(shù)據(jù)昂哭中,而公司的決策者則利用這些數(shù)據(jù)作決策;但是,這個轉(zhuǎn)換及整合數(shù)據(jù)的過程,是建立一個數(shù)據(jù)倉庫最大的挑戰(zhàn)。因為將作業(yè)中的數(shù)據(jù)轉(zhuǎn)換成有用的的策略性信息是整個數(shù)據(jù)倉庫的重點。
綜上所述,數(shù)據(jù)倉庫應(yīng)該具有這些數(shù)據(jù):整合性數(shù)據(jù)(integrated data)、詳細(xì)和匯總性的數(shù)據(jù)(detailed and summarized data)、歷史數(shù)據(jù)、解釋數(shù)據(jù)的數(shù)據(jù)。從數(shù)據(jù)倉庫挖掘出對決策有用的信息與知識,是建立數(shù)據(jù)倉庫與使用Data Mining的最大目的,兩者的本質(zhì)與過程是兩回事。換句話說,數(shù)據(jù)倉庫應(yīng)先行建立完成,Data mining才能有效率的進行,因為數(shù)據(jù)倉庫本身所含數(shù)據(jù)是干凈(不會有錯誤的數(shù)據(jù)參雜其中)、完備,且經(jīng)過整合的。因此兩者關(guān)系或許可解讀為Data Mining是從巨大數(shù)據(jù)倉庫中找出有用信息的一種過程與技術(shù)。
三 OLAP 能不能代替 Data Mining?
所謂OLAP(Online Analytical Process)意指由數(shù)據(jù)庫所連結(jié)出來的在線分析處理程序。有些人會說:「我已經(jīng)有OLAP的工具了,所以我不需要Data Mining。」事實上兩者間是截然不同的,主要差異在于Data Mining用在產(chǎn)生假設(shè),OLAP則用于查證假設(shè)。簡單來說,OLAP是由使用者所主導(dǎo),使用者先有一些假設(shè),然后利用OLAP來查證假設(shè)是否成立;而Data Mining則是用來幫助使用者產(chǎn)生假設(shè)。所以在使用OLAP或其它Query的工具時,使用者是自己在做探索(Exploration),但Data Mining是用工具在幫助做探索。
舉個例子來看,一市場分析師在為超市規(guī)劃貨品架柜擺設(shè)時,可能會先假設(shè)嬰兒尿布和嬰兒奶粉會是常被一起購買的產(chǎn)品,接著便可利用OLAP的工具去驗證此假設(shè)是否為真,又成立的證據(jù)有多明顯;但Data Mining則不然,執(zhí)行Data Mining的人將龐大的結(jié)帳數(shù)據(jù)整理后,并不需要假設(shè)或期待可能的結(jié)果,透過Mining技術(shù)可找出存在于數(shù)據(jù)中的潛在規(guī)則,于是我們可能得到例如尿布和啤酒常被同時購買的意料外之發(fā)現(xiàn),這是OLAP所做不到的。 Data Mining常能挖掘出超越歸納范圍的關(guān)系,但OLAP僅能利用人工查詢及可視化的報表來確認(rèn)某些關(guān)系,是以Data Mining此種自動找出甚至不會被懷疑過的數(shù)據(jù)模型與關(guān)系的特性,事實上已超越了我們經(jīng)驗、教育、想象力的限制,OLAP可以和Data Mining互補,但這項特性是Data Mining無法被OLAP取代的。
四 完整的Data Mining 包含哪些步驟?
以下提供一個Data Mining的進行步驟以為參考: 1. 理解業(yè)務(wù)與理解數(shù)據(jù); 2. 獲取相關(guān)技術(shù)與知識; 3. 整合與查詢數(shù)據(jù); 4. 去除錯誤或不一致及不完整的數(shù)據(jù); 5. 由數(shù)據(jù)選取樣本先行試驗; 6. 建立數(shù)據(jù)模型 7. 實際Data Mining的分析工作; 8. 測試與檢驗; 9. 找出假設(shè)并提出解釋; 10. 持續(xù)應(yīng)用于企業(yè)流程中。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
訓(xùn)練與驗證損失驟升:機器學(xué)習(xí)訓(xùn)練中的異常診斷與解決方案 在機器學(xué)習(xí)模型訓(xùn)練過程中,“損失曲線” 是反映模型學(xué)習(xí)狀態(tài)的核心指 ...
2025-09-19解析 DataHub 與 Kafka:數(shù)據(jù)生態(tài)中兩類核心工具的差異與協(xié)同 在數(shù)字化轉(zhuǎn)型加速的今天,企業(yè)對數(shù)據(jù)的需求已從 “存儲” 轉(zhuǎn)向 “ ...
2025-09-19CDA 數(shù)據(jù)分析師:讓統(tǒng)計基本概念成為業(yè)務(wù)決策的底層邏輯 統(tǒng)計基本概念是商業(yè)數(shù)據(jù)分析的 “基礎(chǔ)語言”—— 從描述數(shù)據(jù)分布的 “均 ...
2025-09-19CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-19SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11