import pandas as pd
features = pd.read_excel(r'D:/第5章找決策樹(shù)/data/air_features.xlsx', index_col='ID') # 導(dǎo)入數(shù)據(jù),并以ID作為索引
features_scaler = 1.0 * (features - features.mean()) / features.std() # 數(shù)據(jù)標(biāo)準(zhǔn)化
# 開(kāi)始聚類
from sklearn.cluster import KMeans
model = KMeans(n_clusters=5, random_state=3) # 輸入指定聚類中心數(shù)和隨機(jī)種子
model.fit(features_scaler) # 模型訓(xùn)練
# 簡(jiǎn)單打印結(jié)果
r1 = pd.Series(model.labels_).value_counts() # 統(tǒng)計(jì)各個(gè)類別的數(shù)目
r2 = pd.DataFrame(model.cluster_centers_) # 找出聚類中心
r = pd.concat([r2, r1], axis=1) # 橫向連接(0是縱向),得到聚類中心對(duì)應(yīng)的類別下的數(shù)目
r.columns = list(features.columns) + ['類別數(shù)目'] # 重命名表頭
print(r)
# 詳細(xì)輸出原始數(shù)據(jù)及對(duì)應(yīng)的類別
r = pd.concat([features, pd.Series(model.labels_, index=features.index)], axis=1)
r.columns = list(features.columns) + ['聚類類別'] # 重命名表頭
r.to_excel(r'D:/第5章找決策樹(shù)/data/features_type.xlsx') # 保存結(jié)果
from radar_map import plot # 導(dǎo)入自定義繪制乘客分群結(jié)果的雷達(dá)圖函數(shù)
# 調(diào)用函數(shù),對(duì)模型結(jié)果進(jìn)行可視化繪圖
plot(kmeans_model=model, columns=features.columns)
運(yùn)行會(huì)出現(xiàn)這個(gè)
ValueError: The number of FixedLocator locations (6), usually from a call to set_ticks, does not match the number of ticklabels (5).
該怎樣修改呢?






