正態(tài)曲線呈鐘型,兩頭低,中間高,左右對(duì)稱因其曲線呈鐘形,因此人們又經(jīng)常稱之為鐘形曲線。
若隨機(jī)變量X服從一個(gè)數(shù)學(xué)期望為μ、方差為σ2的正態(tài)分布,記為N(μ,σ2)。其概率密度函數(shù)為正態(tài)分布的期望值μ決定了其位置,其標(biāo)準(zhǔn)差σ決定了分布的幅度。當(dāng)μ = 0,σ = 1時(shí)的正態(tài)分布是標(biāo)準(zhǔn)正態(tài)分布。
由于一般的正態(tài)總體其圖像不一定關(guān)于y軸對(duì)稱,對(duì)于任一正態(tài)總體,其取值小于x的概率。只要會(huì)用它求正態(tài)總體在某個(gè)特定區(qū)間的概率即可。
為了便于描述和應(yīng)用,常將正態(tài)變量作數(shù)據(jù)轉(zhuǎn)換。將一般正態(tài)分布轉(zhuǎn)化成標(biāo)準(zhǔn)正態(tài)分布。服從標(biāo)準(zhǔn)正態(tài)分布,通過查標(biāo)準(zhǔn)正態(tài)分布表就可以直接計(jì)算出原正態(tài)分布的概率值。故該變換被稱為標(biāo)準(zhǔn)化變換。(標(biāo)準(zhǔn)正態(tài)分布表:標(biāo)準(zhǔn)正態(tài)分布表中列出了標(biāo)準(zhǔn)正態(tài)曲線下從-∞到X(當(dāng)前值)范圍內(nèi)的面積比例。
圖形特征
集中性:正態(tài)曲線的高峰位于正中央,即均數(shù)所在的位置。
對(duì)稱性:正態(tài)曲線以均數(shù)為中心,左右對(duì)稱,曲線兩端永遠(yuǎn)不與橫軸相交。
均勻變動(dòng)性:正態(tài)曲線由均數(shù)所在處開始,分別向左右兩側(cè)逐漸均勻下降。
曲線與橫軸間的面積總等于1,相當(dāng)于概率密度函數(shù)的函數(shù)從正無窮到負(fù)無窮積分的概率為1。即頻率的總和為100%。
關(guān)于μ對(duì)稱,并在μ處取最大值,在正(負(fù))無窮遠(yuǎn)處取值為0,在μ±σ處有拐點(diǎn),形狀呈現(xiàn)中間高兩邊低,正態(tài)分布的概率密度函數(shù)曲線呈鐘形,因此人們又經(jīng)常稱之為鐘形曲線。
正態(tài)分布有兩個(gè)參數(shù),即期望(均數(shù))μ和標(biāo)準(zhǔn)差σ,σ2為方差。
正態(tài)分布具有兩個(gè)參數(shù)μ和σ^2的連續(xù)型隨機(jī)變量的分布,第一參數(shù)μ是服從正態(tài)分布的隨機(jī)變量的均值,第二個(gè)參數(shù)σ^2是此隨機(jī)變量的方差,所以正態(tài)分布記作N(μ,σ2)。
μ是正態(tài)分布的位置參數(shù),描述正態(tài)分布的集中趨勢位置。概率規(guī)律為取與μ鄰近的值的概率大,而取離μ越遠(yuǎn)的值的概率越小。正態(tài)分布以X=μ為對(duì)稱軸,左右完全對(duì)稱。正態(tài)分布的期望、均數(shù)、中位數(shù)、眾數(shù)相同,均等于μ。
σ描述正態(tài)分布資料數(shù)據(jù)分布的離散程度,σ越大,數(shù)據(jù)分布越分散,σ越小,數(shù)據(jù)分布越集中。也稱為是正態(tài)分布的形狀參數(shù),σ越大,曲線越扁平,反之,σ越小,曲線越瘦高。








暫無數(shù)據(jù)