99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
2021-04-21 閱讀量: 1883
如何用sklearn庫計算混淆矩陣

我們評價二分類模型的預(yù)測效果的時候通常需要查看混淆矩陣。

那么在Python里面如何用sklearn庫計算混淆矩陣呢?

當(dāng)我們知道了二分類變量y的預(yù)測值和實際值的時候,就可以計算混淆矩陣了,我們這里自己隨便生成幾個數(shù)據(jù)演示一下

import sklearn

Y_real= [1,0,1,1,1,0,0,0,0,0]

Y_predict=[0,0,0,0,1,1,0,0,0,1]

#如何計算混淆矩陣

confusion_matrix_1=sklearn.metrics.confusion_matrix(Y_real,Y_predict)

print("混淆矩陣如下:",confusion_matrix_1,sep="\n")

#如何獲取分類報告

r_1 = sklearn.metrics.classification_report(Y_real,Y_predict)

print("分類報告如下所示:",r_1,sep="\n")

執(zhí)行結(jié)果如下

混淆矩陣如下:

[[4 2]

[3 1]]

分類報告如下所示:

precision recall f1-score support


0 0.57 0.67 0.62 6

1 0.33 0.25 0.29 4


accuracy 0.50 10

macro avg 0.45 0.46 0.45 10

weighted avg 0.48 0.50 0.48 10


3.png




還可以看下混淆矩陣函數(shù)的幫助文件

In [11]: help(sklearn.metrics.confusion_matrix)

Help on function confusion_matrix in module sklearn.metrics._classification:


confusion_matrix(y_true, y_pred, *, labels=None, sample_weight=None, normalize=None)

Compute confusion matrix to evaluate the accuracy of a classification.


By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}`

is equal to the number of observations known to be in group :math:`i` and

predicted to be in group :math:`j`.


Thus in binary classification, the count of true negatives is

:math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is

:math:`C_{1,1}` and false positives is :math:`C_{0,1}`.


Read more in the :ref:`User Guide <confusion_matrix>`.


Parameters

----------

y_true : array-like of shape (n_samples,)

Ground truth (correct) target values.


y_pred : array-like of shape (n_samples,)

Estimated targets as returned by a classifier.


labels : array-like of shape (n_classes), default=None

List of labels to index the matrix. This may be used to reorder

or select a subset of labels.

If ``None`` is given, those that appear at least once

in ``y_true`` or ``y_pred`` are used in sorted order.


sample_weight : array-like of shape (n_samples,), default=None

Sample weights.


.. versionadded:: 0.18


normalize : {'true', 'pred', 'all'}, default=None

Normalizes confusion matrix over the true (rows), predicted (columns)

conditions or all the population. If None, confusion matrix will not be

normalized.


Returns

-------

C : ndarray of shape (n_classes, n_classes)

Confusion matrix whose i-th row and j-th

column entry indicates the number of

samples with true label being i-th class

and predicted label being j-th class.


0.0000
0
關(guān)注作者
收藏
評論(0)

發(fā)表評論

暫無數(shù)據(jù)
推薦帖子