99999久久久久久亚洲,欧美人与禽猛交狂配,高清日韩av在线影院,一个人在线高清免费观看,啦啦啦在线视频免费观看www

熱線電話:13121318867

登錄
2021-04-06 閱讀量: 2285
sklearn-GridSearchCV,CV調(diào)節(jié)超參使用方法

GridSearchCV,它存在的意義就是自動(dòng)調(diào)參,只要把參數(shù)輸進(jìn)去,就能給出最優(yōu)化的結(jié)果和參數(shù)。但是這個(gè)方法適合于小數(shù)據(jù)集,一旦數(shù)據(jù)的量級(jí)上去了,很難得出結(jié)果。這個(gè)時(shí)候就是需要?jiǎng)幽X筋了。數(shù)據(jù)量比較大的時(shí)候可以使用一個(gè)快速調(diào)優(yōu)的方法——坐標(biāo)下降。它其實(shí)是一種貪心算法:拿當(dāng)前對(duì)模型影響最大的參數(shù)調(diào)優(yōu),直到最優(yōu)化;再拿下一個(gè)影響最大的參數(shù)調(diào)優(yōu),如此下去,直到所有的參數(shù)調(diào)整完畢。這個(gè)方法的缺點(diǎn)就是可能會(huì)調(diào)到局部最優(yōu)而不是全局最優(yōu),但是省時(shí)間省力,巨大的優(yōu)勢(shì)面前,還是試一試吧,后續(xù)可以再拿bagging再優(yōu)化?;氐絪klearn里面的GridSearchCV,GridSearchCV用于系統(tǒng)地遍歷多種參數(shù)組合,通過(guò)交叉驗(yàn)證確定最佳效果參數(shù)。


GridSearchCV官方網(wǎng)址:http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html


常用參數(shù)解讀:

estimator:所使用的分類器,如estimator=RandomForestClassifier(min_samples_split=100,min_samples_leaf=20,max_depth=8,max_features='sqrt',random_state=10), 并且傳入除需要確定最佳的參數(shù)之外的其他參數(shù)。每一個(gè)分類器都需要一個(gè)scoring參數(shù),或者score方法。param_grid:值為字典或者列表,即需要最優(yōu)化的參數(shù)的取值,param_grid =param_test1,param_test1 = {'n_estimators':range(10,71,10)}。scoring :準(zhǔn)確度評(píng)價(jià)標(biāo)準(zhǔn),默認(rèn)None,這時(shí)需要使用score函數(shù);或者如scoring='roc_auc',根據(jù)所選模型不同,評(píng)價(jià)準(zhǔn)則不同。字符串(函數(shù)名),或是可調(diào)用對(duì)象,需要其函數(shù)簽名形如:scorer(estimator, X, y);如果是None,則使用estimator的誤差估計(jì)函數(shù)。scoring參數(shù)選擇如下:


參考地址:http://scikit-learn.org/stable/modules/model_evaluation.html

108.9473
0
關(guān)注作者
收藏
評(píng)論(0)

發(fā)表評(píng)論

暫無(wú)數(shù)據(jù)
推薦帖子