2020-02-26
閱讀量:
948
什么是主成分分析
主成分分析(Principal Component Analysis,PCA), 是一種統(tǒng)計(jì)方法。通過正交變換將一組可能存在相關(guān)性的變量轉(zhuǎn)換為一組線性不相關(guān)的變量,轉(zhuǎn)換后的這組變量叫主成分。
在實(shí)際課題中,為了全面分析問題,往往提出很多與此有關(guān)的變量(或因素),因?yàn)槊總€(gè)變量都在不同程度上反映這個(gè)課題的某些信息。
主成分分析首先是由K.皮爾森(Karl Pearson)對(duì)非隨機(jī)變量引入的,爾后H.霍特林將此方法推廣到隨機(jī)向量的情形。信息的大小通常用離差平方和或方差來衡量。






評(píng)論(0)


暫無數(shù)據(jù)
CDA考試動(dòng)態(tài)
CDA報(bào)考指南
推薦帖子
0條評(píng)論
0條評(píng)論
0條評(píng)論