
過擬合(over-fitting)是指機(jī)器學(xué)習(xí)模型或者是深度學(xué)習(xí)模型在訓(xùn)練樣本中表現(xiàn)得過于優(yōu)越,導(dǎo)致在驗(yàn)證數(shù)據(jù)集以及測試數(shù)據(jù)集中表現(xiàn)不佳。也就是referstoa模型對于訓(xùn)練數(shù)據(jù)擬合程度過高的情況。
通過學(xué)習(xí)曲線來理解:
當(dāng)某個(gè)模型對訓(xùn)練數(shù)據(jù)中的細(xì)節(jié)和噪音學(xué)習(xí)過度之后,會使得模型在新的數(shù)據(jù)上表現(xiàn)很不好,這是就是過擬合·。這種情況意味著模型把訓(xùn)練數(shù)據(jù)中的噪音或者隨機(jī)波動也被當(dāng)做概念學(xué)習(xí)了。但是這些概念不適用于新的數(shù)據(jù),從而導(dǎo)致模型泛化能力的越來越差。
1.過擬合常見原因
1)根本的原因則是特征維度(或參數(shù))過多,導(dǎo)致擬合的函數(shù)完美的經(jīng)過訓(xùn)練集,但是對新數(shù)據(jù)的預(yù)測結(jié)果則較差。
2)建模樣本選取有誤,如樣本數(shù)量太少,數(shù)量級要小于模型的復(fù)雜度,或者選樣方法錯(cuò)誤,樣本標(biāo)簽錯(cuò)誤等,導(dǎo)致樣本數(shù)據(jù)不足以代表預(yù)定的分類規(guī)則;
3)樣本噪音干擾過大,模型過分記住了噪音特征,從而擾亂了預(yù)設(shè)的分類規(guī)則;
4)假設(shè)的模型無法合理存在,或者說是假設(shè)成立的條件實(shí)際并不成立;
5)對于決策樹模型,如果我們對于其生長沒有合理的限制,其自由生長有可能使節(jié)點(diǎn)只包含單純的事件數(shù)據(jù)(event)或非事件數(shù)據(jù)(no event),使其雖然可以完美匹配(擬合)訓(xùn)練數(shù)據(jù),但是無法適應(yīng)其他數(shù)據(jù)集。
6)對于神經(jīng)網(wǎng)絡(luò)模型:
a)對樣本數(shù)據(jù)可能存在分類決策面不唯一,隨著學(xué)習(xí)的進(jìn)行,,BP算法使權(quán)值可能收斂過于復(fù)雜的決策面;
b)權(quán)值學(xué)習(xí)迭代次數(shù)足夠多(Overtraining),擬合了訓(xùn)練數(shù)據(jù)中的噪聲和訓(xùn)練樣例中沒有代表性的特征。
2.過擬合問題解決方法
1)重新清洗數(shù)據(jù);
2)增大數(shù)據(jù)的訓(xùn)練量;
3)采用正則化方法,包括L0正則、L1正則和L2正則;
4)減少特征數(shù)量;
5)降低模型的復(fù)雜度;
6)使用Dropout(只適用于神經(jīng)網(wǎng)絡(luò)中,將隱藏層的神經(jīng)單元按一定比例去除,使神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)簡單化)
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時(shí)代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03