
缺失值是指粗糙數(shù)據(jù)中由于缺少信息而造成的數(shù)據(jù)的聚類、分組、刪失或截斷。它指的是現(xiàn)有數(shù)據(jù)集中某個或某些屬性的值是不完全的。
python缺失的處理一般情況下有三種方法:
(1)刪掉缺失值數(shù)據(jù)
刪除法是對缺失值進(jìn)行處理的最原始方法。它將存在缺失值的個案刪除。如果數(shù)據(jù)缺失問題可以通過簡單的刪除小部分樣本來達(dá)到目標(biāo),那么這個方法是最有效的。
(2)不對其進(jìn)行處理
在實際應(yīng)用中,一些模型無法應(yīng)對具有缺失值的數(shù)據(jù),因此要對缺失值進(jìn)行處理。然而還有一些模型本身就可以應(yīng)對具有缺失值的數(shù)據(jù),此時無需對數(shù)據(jù)進(jìn)行處理,比如Xgboost,rfr等高級模型。
(3)利用插補法對數(shù)據(jù)進(jìn)行補充
A.均值插補
屬于單值插補。數(shù)據(jù)的屬性分為定距型和非定距型。如果缺失值是定距型的,就以該屬性存在值的平均值來插補缺失的值;如果缺失值是非定距型的,就用該屬性的眾數(shù)來補齊缺失的值。
B.利用同類均值插補
屬于單值插補。用層次聚類模型預(yù)測缺失變量的類型,再以該類型的均值插補。
C.熱卡填補
熱卡填充法是在完整數(shù)據(jù)中找到一個與它最相似的對象,然后用這個相似對象的值來進(jìn)行填充。通常會找到超出一個的相似對象,在所有匹配對象中沒有最好的,而是從中隨機的挑選一個作為填充值。這個問題關(guān)鍵是不同的問題可能會選用不同的標(biāo)準(zhǔn)來對相似進(jìn)行判定,以及如何制定這個判定標(biāo)準(zhǔn)。該方法概念上很簡單,且利用了數(shù)據(jù)間的關(guān)系來進(jìn)行空值估計,但缺點在于難以定義相似標(biāo)準(zhǔn),主觀因素較多。
D.多重插補
多值插補的思想來源于貝葉斯估計,認(rèn)為待插補的值是隨機的,它的值來自于已觀測到的值。具體實踐上通常是估計出待插補的值,然后再加上不同的噪聲,形成多組可選插補值。根據(jù)某種選擇依據(jù),選取最合適的插補值。
E.極大似然估計(Max Likelihood ,ML)
在缺失類型為隨機缺失的條件下,假設(shè)模型對于完整的樣本是正確的,那么通過觀測數(shù)據(jù)的邊際分布可以對未知參數(shù)進(jìn)行極大似然估計(Little and Rubin)。這種方法也被稱為忽略缺失值的極大似然估計,對于極大似然的參數(shù)估計實際中常采用的計算方法是期望值最大化(Expectation Maximization,EM)。
F.建模預(yù)測
將缺失的屬性作為預(yù)測目標(biāo)來預(yù)測,將數(shù)據(jù)集按照是否含有特定屬性的缺失值分為兩類,利用現(xiàn)有的機器學(xué)習(xí)算法對待預(yù)測數(shù)據(jù)集的缺失值進(jìn)行預(yù)測。
該方法的根本的缺陷是如果其他屬性和缺失屬性無關(guān),則預(yù)測的結(jié)果毫無意義;但是若預(yù)測結(jié)果相當(dāng)準(zhǔn)確,則說明這個缺失屬性是沒必要納入數(shù)據(jù)集中的;一般的情況是介于兩者之間。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學(xué)方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學(xué)方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03