
數(shù)據(jù)分析時,數(shù)據(jù)量大不可怕,可怕的是數(shù)據(jù)傾斜。當出現(xiàn)數(shù)據(jù)傾斜時,小量任務(wù)耗時遠高于其它任務(wù),從而使得整體耗時過大,未能充分發(fā)揮分布式系統(tǒng)的并行計算優(yōu)勢。下面小編就給大家分享幾種數(shù)據(jù)傾斜優(yōu)化的方法,希望對大家有所幫助。
一、解決思路
業(yè)務(wù)邏輯
程序?qū)用?
調(diào)參方面
二、解決方法
1.針對goupby出現(xiàn)數(shù)據(jù)傾斜
解決策略是對key值進行加鹽處理:
核心實現(xiàn)思路就是進行兩階段聚合。第一次是局部聚合,先給每個key都打上一個隨機數(shù),此時原先一樣的key就變成不一樣的了,接著對打上隨機數(shù)后的數(shù)據(jù),執(zhí)行sum,count等聚合操作,進行局部聚合。然后將各個key的前綴給去掉,就會變成(hello,2)(hello,2),再次進行全局聚合操作,就可以得到最終結(jié)果了。
方案優(yōu)點:對于聚合類的shuffle操作導致的數(shù)據(jù)傾斜,效果是非常不錯的。通常都可以解決掉數(shù)據(jù)傾斜,或者至少是大幅度緩解數(shù)據(jù)傾斜
方案缺點:僅僅適用于聚合類的shuffle操作,適用范圍相對較窄。如果是join類的shuffle操作,還得用其他的解決方案。
2.針對join出現(xiàn)的數(shù)據(jù)傾斜
方案一:抽樣求出引起數(shù)據(jù)傾斜的key值,進行過濾處理
情景:某張表中數(shù)據(jù)分布不均,個別key值出現(xiàn)次數(shù)占比很大,引起join數(shù)據(jù)傾斜,例如數(shù)據(jù)空值或者爬蟲IP
處理思路:首先對數(shù)據(jù)進行抽樣,選出key占比較大列表,采取過濾處理,去掉無效值或者加鹽等處理,然后先進行局部處理,在整體處理
優(yōu)點:可以快速解決數(shù)據(jù)傾斜問題
缺點:應(yīng)用場景受限,適用于幾個key值偏多的情況
方案二:優(yōu)先使用mapjoin
由于map階段不會發(fā)生數(shù)據(jù)傾斜,使用mapjoin可以防止數(shù)據(jù)傾斜,join操作中的表的數(shù)據(jù)量比較小(比如幾百M或者一兩G),比較適用此方案。
方案優(yōu)點:對join操作導致的數(shù)據(jù)傾斜,效果非常好,因為根本就不會發(fā)生shuffle,也就根本不會發(fā)生數(shù)據(jù)傾斜。
方案缺點:適用場景較少,因為這個方案只適用于一個大表和一個小表的情況。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當下,精準營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10