
文章來源: 數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)之美
作者:黃偉呢
目錄
1.scipy庫中各分布對(duì)應(yīng)的方法
from scipy import stats # 正態(tài)分布 stats.norm # 卡方分布 stats.chi2 # t分布 stats.t # F分布 stats.f
2.stats庫中各分布的常用方法及其功能
對(duì)于正態(tài)分布:
stats.norm.cdf(α,均值,方差);
stats.norm.pdf(α,均值,方差);
stats.norm.isf(α,均值,方差);
對(duì)于t分布:
stats.t.cdf(α,自由度);
stats.t.pdf(α,自由度);
stats.t.isf(α,自由度);
對(duì)于F分布:
stats.f.cdf(α,自由度1.自由度2);
stats.f.pdf(α,自由度1.自由度2);
stats.f.isf(α,自由度1.自由度2);
一個(gè)簡單的案例說明:
# 對(duì)于正態(tài)分布 stats.norm.cdf(0.5.2.3) stats.norm.pdf(0.5.2.3) stats.norm.isf(0.05.2.3) # 對(duì)于t分布 stats.t.cdf(0.5.10) stats.t.pdf(0.5.10) stats.t.isf(0.0005.45)
結(jié)果如下:
3.正態(tài)分布的概率密度函數(shù)及其圖象
1)正態(tài)分布的概率密度函數(shù)及其圖象
2)python繪制正態(tài)分布的概率密度函數(shù)圖象
x = np.linspace(-5.5.100000) y = stats.norm.pdf(x,0.1) plt.plot(x,y,c="red") plt.title('正態(tài)分布的概率密度函數(shù)') plt.tight_layout() plt.savefig("正態(tài)分布的概率密度函數(shù)",dpi=300)
結(jié)果如下:
4.卡方分布的概率密度函數(shù)及其圖象
1)卡方分布的概率密度函數(shù)及其圖象
2)python繪制卡方分布的概率密度函數(shù)圖象
x = np.linspace(0.100.100000) color = ["blue","green","darkgrey","darkblue","orange"] for i in range(10.51.10): y=stats.chi2.pdf(x,df=i) plt.plot(x,y,c=color[int((i-10)/10)]) plt.title('卡方分布') plt.tight_layout() plt.savefig(" 布的概率密度函數(shù)",dpi=300)
結(jié)果如下:
總結(jié):從圖中可以看出,隨著自由度的增加,卡方分布的概率密度曲線趨于對(duì)稱。當(dāng)自由度n -> +∞的時(shí)候,卡方分布的極限分布就是正態(tài)分布。
5.t分布的概率密度函數(shù)及其圖象
1)t分布的概率密度函數(shù)及其圖象
2)python繪制t分布的概率密度函數(shù)圖象
x = np.linspace(-5.5.100000) y = stats.t.pdf(x_t,2) plt.plot(x,y,c="orange") plt.title('t分布的概率密度函數(shù)') plt.tight_layout() plt.savefig("t分布的概率密度函數(shù)",dpi=300)
結(jié)果如下:
3)python繪制t分布和正態(tài)分布的概率密度函數(shù)對(duì)比圖
x_norm = np.linspace(-5.5.100000) y_norm = stats.norm.pdf(x_norm,0.1) plt.plot(x_norm,y_norm,c="black") color = ["green","darkblue","orange"] x_t = np.linspace(-5.5.100000) for i in range(1.4.1): y_t = stats.t.pdf(x_t,i) plt.plot(x_t,y_t,c=color[int(i-1)]) plt.title('t分布和正態(tài)分布的概率密度函數(shù)對(duì)比圖') plt.tight_layout() plt.savefig("t分布和正態(tài)分布的概率密度函數(shù)對(duì)比圖",dpi=300)
結(jié)果如下:
總結(jié):從圖中可以看出,t分布的概率密度函數(shù)和正態(tài)分布的概率密度函數(shù)都是偶函數(shù)(左右對(duì)稱的)。t分布隨著自由度的增加,就越來越接近正態(tài)分布,即t分布的極限分布也是正態(tài)分布。
6.F分布的概率密度函數(shù)及其圖象
1)F分布的概率密度函數(shù)及其圖象
x = np.linspace(-1.8.100000) y1 = stats.f.pdf(x,1.10) y2 = stats.f.pdf(x,5.10) y3 = stats.f.pdf(x,10.10) plt.plot(x,y1) plt.plot(x,y2) plt.plot(x,y3) plt.ylim(0.1) plt.title('F分布的概率密度函數(shù)') plt.tight_layout() plt.savefig("F分布的概率密度函數(shù)",dpi=300)
結(jié)果如下:
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動(dòng)態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場(chǎng)景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲(chǔ)的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對(duì)象的 text 與 content:區(qū)別、場(chǎng)景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請(qǐng)求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請(qǐng)求工具對(duì)比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請(qǐng)求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動(dòng)下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動(dòng)決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場(chǎng)景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10