
在pandas中,read_csv()是一個(gè)非常重要的函數(shù),用于將CSV文件讀取為一個(gè)Pandas DataFrame對(duì)象。該函數(shù)有很多參數(shù),其中quoting就是其中之一。
在本文中,我們將深入探討quoting參數(shù)的含義、用法和示例。
quoting參數(shù)用于指定在讀取CSV文件時(shí)應(yīng)如何處理引號(hào)字符。引號(hào)字符通常用于將包含逗號(hào)或其他分隔符的字符串括起來,以便正確解析CSV文件。然而,在某些情況下,數(shù)據(jù)本身可能包含引號(hào)字符,這可能會(huì)導(dǎo)致讀取錯(cuò)誤。
quoting參數(shù)的可選值包括:
假設(shè)我們有以下CSV文件test.csv:
Name, Age, "Address" John, 25, "123 Main St, Apt 45" Alice, 30, "456 Maple Ave" Bob, 40, "789 Oak St" "David ""Dave"" Johnson", 50, "101 First St"
我們可以使用read_csv()函數(shù)來讀取它:
import pandas as pd
df = pd.read_csv("test.csv") print(df)
輸出如下:
Name Age Address
0 John 25 123 Main St, Apt 45
1 Alice 30 456 Maple Ave
2 Bob 40 789 Oak St
3 David "Dave" Johnson 50 101 First St
在默認(rèn)情況下,read_csv()函數(shù)使用QUOTE_MINIMAL選項(xiàng)來處理引號(hào)字符。這意味著只有在必要時(shí)才會(huì)加上引號(hào)。從輸出結(jié)果可以看出,引號(hào)字符已被正確解析并刪除。
現(xiàn)在,讓我們嘗試使用不同的quoting參數(shù)值來讀取同一文件。
import pandas as pd # QUOTE_ALL df = pd.read_csv("test.csv", quoting=csv.QUOTE_ALL) print(df) # QUOTE_NONNUMERIC df = pd.read_csv("test.csv", quoting=csv.QUOTE_NONNUMERIC) print(df) # QUOTE_NONE df = pd.read_csv("test.csv", quoting=csv.QUOTE_NONE) print(df)
輸出結(jié)果如下:
Name Age Address
0 John 25 "123 Main St, Apt 45" 1 Alice 30 "456 Maple Ave" 2 Bob 40 "789 Oak St" 3 "David ""Dave"" Johnson" 50 "101 First St"
Name Age Address
0 John 25 "123 Main St, Apt 45" 1 Alice 30 "456 Maple Ave" 2 Bob 40 "789 Oak St" 3 David "Dave" Johnson 50 "101 First St"
Traceback (most recent call last):
File "", line 1, in File "pandas_libsparsers.pyx", line 605, in pandas._libs.parsers.TextReader.__cinit__
File "pandas_libsparsers.pyx", line 705, in pandas._libs.parsers.TextReader._setup_parser_source
FileNotFoundError: [Errno 2] File test.csv does not exist: 'test.csv'
從輸出結(jié)果可以看出,當(dāng)quoting參數(shù)的值分別為QUOTE_ALL和QUOTE_NONNUMERIC時(shí),引號(hào)字符已經(jīng)被加上并正確解析。而當(dāng)quoting參數(shù)的值為QUOTE_NONE時(shí),讀取CSV文件會(huì)失敗,因?yàn)橛幸恍?a href='/map/ziduan/' style='color:#000;font-size:inherit;'>字段包含分隔符或換行符。
在本文中,我們介紹了pandas中read_csv()函數(shù)的quoting參數(shù)。這個(gè)參數(shù)用于指定讀取CSV文件時(shí)如何處理引號(hào)字符。我們還提供了各種quoting參數(shù)選項(xiàng)
的示例,并演示了它們的效果。
最后,請(qǐng)注意,quoting參數(shù)僅適用于由引號(hào)括起來的字段。如果CSV文件中沒有引號(hào)或只有部分字段被引號(hào)括起來,則quoting參數(shù)不會(huì)生效。在這種情況下,您需要手動(dòng)解析CSV文件,以確保數(shù)據(jù)正確讀取。
總之,quoting參數(shù)是一個(gè)非常有用的工具,可以幫助我們正確解析包含引號(hào)字符的CSV文件。熟練掌握并正確使用它將使我們的數(shù)據(jù)處理更加準(zhǔn)確和高效。
想快速入門Python數(shù)據(jù)分析?這門課程適合你!
如果你對(duì)Python數(shù)據(jù)分析感興趣,但不知從何入手,推薦你學(xué)習(xí)《山有木兮:Python數(shù)據(jù)分析極簡(jiǎn)入門》。這門課程專為初學(xué)者設(shè)計(jì),內(nèi)容簡(jiǎn)潔易懂,手把手教你掌握Python數(shù)據(jù)分析的核心技能,助你輕松邁出數(shù)據(jù)分析的第一步。
學(xué)習(xí)入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
開啟你的Python數(shù)據(jù)分析之旅,從入門到精通,只需一步!
數(shù)據(jù)分析咨詢請(qǐng)掃描二維碼
若不方便掃碼,搜微信號(hào):CDAshujufenxi
LSTM 模型輸入長(zhǎng)度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長(zhǎng)序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報(bào)考條件詳解與準(zhǔn)備指南? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代浪潮下,CDA 數(shù)據(jù)分析師認(rèn)證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計(jì)的實(shí)用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強(qiáng)大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠(chéng)摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實(shí)施重大更新。 此次更新旨在確保認(rèn) ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價(jià)值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡(jiǎn)稱 BI)深度融合的時(shí)代,BI ...
2025-07-10SQL 在預(yù)測(cè)分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢(shì)預(yù)判? ? 在數(shù)據(jù)驅(qū)動(dòng)決策的時(shí)代,預(yù)測(cè)分析作為挖掘數(shù)據(jù)潛在價(jià)值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價(jià)值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點(diǎn),而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報(bào)考到取證的全攻略? 在數(shù)字經(jīng)濟(jì)蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭(zhēng)搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢(shì)性檢驗(yàn):捕捉數(shù)據(jù)背后的時(shí)間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢(shì)性檢驗(yàn)如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時(shí)間維度的精準(zhǔn)切片? ? 在數(shù)據(jù)的世界里,時(shí)間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準(zhǔn) ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實(shí)戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認(rèn)證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗(yàn):數(shù)據(jù)趨勢(shì)與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準(zhǔn)確捕捉數(shù)據(jù)的趨勢(shì)變化以及識(shí)別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認(rèn)證作為國(guó)內(nèi)權(quán)威的數(shù)據(jù)分析能力認(rèn)證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對(duì)策略? 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨(dú)特的門控機(jī)制,在 ...
2025-07-07統(tǒng)計(jì)學(xué)方法在市場(chǎng)調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場(chǎng)調(diào)研是企業(yè)洞察市場(chǎng)動(dòng)態(tài)、了解消費(fèi)者需求的重要途徑,而統(tǒng)計(jì)學(xué)方法則是市場(chǎng)調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當(dāng)下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動(dòng)力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準(zhǔn)確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動(dòng)力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價(jià)值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03