
今天CDA為大家分享:Pyecharts繪制22種超實用精美圖表
作者:俊欣
來源:關(guān)于數(shù)據(jù)分析與可視化
今天來給大家分享一下Pyecharts模塊,說到它我們就不得不提Echarts,它是由百度開源的一款使用JavaScript實現(xiàn)的開源可視化庫,涵蓋了各種圖表、滿足各類業(yè)務(wù)需求,而pyecharts也就是Python與Echarts結(jié)合之后的產(chǎn)物,封裝了Echarts各類圖表的基本操作,然后通過渲染機制,輸出一個包含JS代碼的HTML文件。
說到安裝模塊,我們可以這樣來進(jìn)行,
pip install pyecharts
使用Pyecharts創(chuàng)建圖形的基本步驟是
1. 準(zhǔn)備數(shù)據(jù)
2. 設(shè)計圖形的樣式、背景顏色
3. Pyecharts繪圖
4. 設(shè)計圖表的標(biāo)題或者圖例等屬性
5. 導(dǎo)出至html
from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.faker import Faker
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="這是主標(biāo)題", subtitle="這是副標(biāo)題"))
.render("bar_base.html")
)
出來的結(jié)果是
import pandas as pd import numpy as np data = pd.DataFrame({'x':np.arange(1,101), 'y':["隨機生成的數(shù)字"]})
df = pd.read_excel("你的文件的路徑")
Pyecharts內(nèi)部還提供了一些數(shù)據(jù)集,主要包含類別數(shù)據(jù)、時間數(shù)據(jù)、顏色數(shù)據(jù)、地理數(shù)據(jù)、世界人口數(shù)據(jù)等等,通過choose()方法來隨機選擇使用哪個
def choose(self) -> list: return random.choice(
[ self.clothes, self.drinks, self.phones, self.fruits, self.animal, self.dogs, self.week,
]
)
說到圖形的樣式,大概都這么幾種
class _ThemeType:
BUILTIN_THEMES = ["light", "dark", "white"]
LIGHT = "light" DARK = "dark" WHITE = "white" CHALK: str = "chalk" ESSOS: str = "essos" INFOGRAPHIC: str = "infographic" MACARONS: str = "macarons" PURPLE_PASSION: str = "purple-passion" ROMA: str = "roma" ROMANTIC: str = "romantic" SHINE: str = "shine" VINTAGE: str = "vintage" WALDEN: str = "walden" WESTEROS: str = "westeros" WONDERLAND: str = "wonderland" HALLOWEEN: str = "halloween"
設(shè)置標(biāo)題以及副標(biāo)題的代碼如下
set_global_opts(title_opts=opts.TitleOpts(title="這是主標(biāo)題",
subtitle="這是副標(biāo)題"))
legend_opts=opts.LegendOpts(type_="scroll", orient="vertical",
pos_top="15%",pos_left="7%")) # 圖裂的位置 label_opts=opts.LabelOpts(formatter=": {c}") # 結(jié)果的展現(xiàn)形式
render("test.html")
# 如果是在jupyter notebook當(dāng)中 render_notebook()
堆疊柱狀圖
同個品類不同類目的柱子可以堆疊起來呈現(xiàn),也就是堆疊的柱狀圖
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values(), stack="stack1")
.add_yaxis("商家2", Faker.values(), stack="stack1")
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆疊數(shù)據(jù)(全部)"))
.render("bar_stack_1212.html")
)
當(dāng)然我們也可以部分堆疊,而不是上面這種全部的堆疊
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values(), stack="stack0")
.add_yaxis("商家2", Faker.values(), stack="stack0")
.add_yaxis("商家3", Faker.values())
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆疊數(shù)據(jù)(部分)"))
.render("bar_stack_part.html")
)
柱狀圖的橫坐標(biāo)傾斜一丟丟
有時候橫坐標(biāo)的標(biāo)識字?jǐn)?shù)較多,X軸上顯示全,我們可以將標(biāo)識的字體稍微傾斜一些
c = (
Bar()
.add_xaxis(
[ "名字相當(dāng)長的X軸標(biāo)簽1", "名字相當(dāng)長的X軸標(biāo)簽2", "名字相當(dāng)長的X軸標(biāo)簽3", "名字相當(dāng)長的X軸標(biāo)簽4", "名字相當(dāng)長的X軸標(biāo)簽5", "名字相當(dāng)長的X軸標(biāo)簽6", ]
)
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=15)),
title_opts=opts.TitleOpts(title="Bar-旋轉(zhuǎn)X軸標(biāo)簽", subtitle="副標(biāo)題"),
)
.render("test.html")
)
柱狀圖可以自動縮放的
通過底下的滑塊來實現(xiàn)橫坐標(biāo)的縮放、范圍的調(diào)整等等
c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家1", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-數(shù)據(jù)縮放(拖快-水平)"),
datazoom_opts=opts.DataZoomOpts(),
)
.render("bar_datazoom_slider.html")
)
當(dāng)然滑塊也可以放在垂直的右側(cè)
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家1", Faker.days_values, color=Faker.rand_color())
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(滑塊-垂直)"),
datazoom_opts=opts.DataZoomOpts(orient="vertical"),
)
.render("bar_datazoom_slider_vertical.html")
)
我們也可以通過拖動里面的柱子來實現(xiàn)數(shù)據(jù)縮放、范圍的改變
c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家1", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(內(nèi)置+外置)"),
datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],
)
.render("bar_datazoom_both.html")
)
柱狀圖給X軸Y軸命名的
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-XY 軸名稱"),
yaxis_opts=opts.AxisOpts(name="這個是 Y 軸"),
xaxis_opts=opts.AxisOpts(name="這個是 X 軸"),
)
.render("bar_name_xyaxis.html")
)
柱狀圖柱間距離不相同的
在柱狀圖當(dāng)中,不同柱子之間的距離也可以不是相同的
c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.WHITE))
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values(), gap="0%")
.add_yaxis("商家2", Faker.values(), gap="0%")
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-柱間距離不同"))
.render("bar_different_series_gap.html")
)
柱狀圖水平狀態(tài)的
還有水平方向的柱狀圖
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.reversal_axis()
.set_series_opts(label_opts=opts.LabelOpts(position="right"))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-水平方向"))
.render("bar_reversal_axis.html")
)
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values(), category_gap=0, color=Faker.rand_color())
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-直方圖"))
.render("bar_histogram.html")
)
箱型圖更加有利于我們來觀察數(shù)據(jù)的內(nèi)在分布
from pyecharts.charts import Boxplot v1 = [ [850, 740, 950, 1090, 930, 850, 950, 980, 1000, 880, 1000, 980], [980, 940, 960, 940, 900, 800, 850, 880, 950, 840, 830, 800], ] v2 = [ [890, 820, 820, 820, 800, 770, 760, 760, 750, 760, 950, 920], [900, 840, 800, 810, 760, 810, 790, 850, 820, 850, 870, 880], ] c = Boxplot() c.add_xaxis(["A", "B"]) c.add_yaxis("類目1", c.prepare_data(v1)) c.add_yaxis("類目2", c.prepare_data(v2)) c.set_global_opts(title_opts=opts.TitleOpts(title="箱型圖-基本示例")) c.render("boxplot_test.html")
日歷圖
日歷圖具體指按照日歷的布局,用顏色展現(xiàn)每一天的數(shù)據(jù),從而比較直觀地看到全年的數(shù)據(jù)情況,例如展示超市全年的銷售額,從而看出具體某個月份或者某個星期的銷售額比較低
c = ( Calendar(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC)) .add("", data, calendar_opts=opts.CalendarOpts(range_="2020")) .set_global_opts( title_opts=opts.TitleOpts(title="日歷圖-2020年超市的銷售額"), visualmap_opts=opts.VisualMapOpts( max_=250000, min_=10000, orient="horizontal", is_piecewise=True, pos_top="230px", pos_left="100px", ), ) .render("calendar_test.html") )
K線圖
c = (
Kline(init_opts=opts.InitOpts(theme=ThemeType.ESSOS))
.add_xaxis(["2020/7/{}".format(i + 1) for i in range(31)])
.add_yaxis("kline", data)
.set_global_opts(
yaxis_opts=opts.AxisOpts(is_scale=True),
xaxis_opts=opts.AxisOpts(is_scale=True),
title_opts=opts.TitleOpts(title="K線圖-基本示例"),
)
.render("kline_test.html")
)
from pyecharts.charts import Funnel c = ( Funnel()
.add("類目", [list(z) for z in zip(Faker.choose(), Faker.values())])
.set_global_opts(title_opts=opts.TitleOpts(title="漏斗圖-基本示例"))
.render("funnel_test.html")
)
c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="折線圖-基本示例"))
.render("line_test.html")
)
水球圖
水球圖通常來顯示指標(biāo)的完成程度
from pyecharts.charts import Liquid c = ( Liquid()
.add("lq", [0.55, 0.75])
.set_global_opts(title_opts=opts.TitleOpts(title="Liquid-基本示例"))
.render("liquid_test.html")
)
c = (
WordCloud()
.add(series_name="詞云圖實例", data_pair=data, word_size_range=[5, 100])
.set_global_opts(
title_opts=opts.TitleOpts(
title="詞云圖實例", title_textstyle_opts=opts.TextStyleOpts(font_size=23)
),
tooltip_opts=opts.TooltipOpts(is_show=True),
)
.render("basic_wordcloud.html")
)
餅圖
c = ( Pie()
.add("類目", [list(z) for z in zip(Faker.choose(), Faker.values())])
.set_global_opts(title_opts=opts.TitleOpts(title="餅圖-基本示例"))
.set_series_opts(label_opts=opts.LabelOpts(formatter=": {c}"))
.render("pie_test.html")
)
儀表盤圖
儀表盤的繪制也可以用來展示指標(biāo)的完成程度
from pyecharts.charts import Gauge c = ( Gauge()
.add("", [("完成率", 70)])
.set_global_opts(title_opts=opts.TitleOpts(title="儀表盤-基本示例"))
.render("gauge_test.html")
)
c = ( Map()
.add("商家1", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
.set_global_opts(title_opts=opts.TitleOpts(title="地圖-基本示例"))
.render("map_test.html")
)
漣漪散點圖
c = (
EffectScatter()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="漣漪散點圖-基本示例"))
.render("effectscatter_test.html")
)
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時,“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗與 t 檢驗:差異、適用場景與實踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計學(xué)領(lǐng)域,假設(shè)檢驗是驗證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點數(shù)據(jù)的科學(xué)計數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點數(shù)據(jù)時的科學(xué)計數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運營問題、提升執(zhí)行效率的核心手段,其價值 ...
2025-09-12用 SQL 驗證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計” 與 “用戶體驗 ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實踐到業(yè)務(wù)價值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價值導(dǎo)向 統(tǒng)計模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10CDA 數(shù)據(jù)分析師:商業(yè)數(shù)據(jù)分析實踐的落地者與價值創(chuàng)造者 商業(yè)數(shù)據(jù)分析的價值,最終要在 “實踐” 中體現(xiàn) —— 脫離業(yè)務(wù)場景的分 ...
2025-09-10機器學(xué)習(xí)解決實際問題的核心關(guān)鍵:從業(yè)務(wù)到落地的全流程解析 在人工智能技術(shù)落地的浪潮中,機器學(xué)習(xí)作為核心工具,已廣泛應(yīng)用于 ...
2025-09-09SPSS 編碼狀態(tài)區(qū)域中 Unicode 的功能與價值解析 在 SPSS(Statistical Product and Service Solutions,統(tǒng)計產(chǎn)品與服務(wù)解決方案 ...
2025-09-09