
來源:AI入門學習
作者:小伍哥
1、算法概述
關(guān)聯(lián)規(guī)則挖掘可以讓我們從數(shù)據(jù)集中發(fā)現(xiàn)項與項(item 與 item)之間的關(guān)系,它在我們的生活中有很多應(yīng)用場景,“購物籃分析”就是一個常見的場景,這個場景可以從消費者交易記錄中發(fā)掘商品與商品之間的關(guān)聯(lián)關(guān)系,進而通過商品捆綁銷售或者相關(guān)推薦的方式帶來更多的銷售量。所以說,關(guān)聯(lián)規(guī)則挖掘是個非常有用的技術(shù)。
關(guān)聯(lián)規(guī)則是反映一個事物與其他事物之間的相互依存性和關(guān)聯(lián)性,常用于實體商店或在線電商的推薦系統(tǒng):通過對顧客的購買記錄數(shù)據(jù)庫進行關(guān)聯(lián)規(guī)則挖掘,最終目的是發(fā)現(xiàn)顧客群體的購買習慣的內(nèi)在共性,例如購買產(chǎn)品A的同時也連帶購買產(chǎn)品B的概率,根據(jù)挖掘結(jié)果,調(diào)整貨架的布局陳列、設(shè)計促銷組合方案,實現(xiàn)銷量的提升,最經(jīng)典的應(yīng)用案例莫過于<啤酒和尿布>。
關(guān)聯(lián)分析又稱關(guān)聯(lián)挖掘,就是在交易數(shù)據(jù)、關(guān)系數(shù)據(jù)或其他信息載體中,查找存在于項目集合或?qū)ο蠹现g的頻繁模式、關(guān)聯(lián)、相關(guān)性或因果結(jié)構(gòu)。能從大量數(shù)據(jù)中發(fā)現(xiàn)項集之間有趣的關(guān)聯(lián)和相關(guān)聯(lián)系。關(guān)聯(lián)分析的一個典型例子是購物籃分析。該過程通過發(fā)現(xiàn)顧客放人其購物籃中的不同商品之間的聯(lián)系,分析顧客的購買習慣。通過了解哪些商品頻繁地被顧客同時購買,這種關(guān)聯(lián)的發(fā)現(xiàn)可以幫助零售商制定營銷策略。其他的應(yīng)用還包括價目表設(shè)計、商品促銷、商品的排放和基于購買模式的顧客劃分。
可從數(shù)據(jù)庫中關(guān)聯(lián)分析出形如“由于某些事件的發(fā)生而引起另外一些事件的發(fā)生”之類的規(guī)則。如“67%的顧客在購買啤酒的同時也會購買尿布”,因此通過合理的啤酒和尿布的貨架擺放或捆綁銷售可提高超市的服務(wù)質(zhì)量和效益。又如“C語言課程優(yōu)秀的同學,在學習‘數(shù)據(jù)結(jié)構(gòu)’時為優(yōu)秀的可能性達88%”,那么就可以通過強化“C語言”的學習來提高教學效果。
2、應(yīng)用場景
01)互聯(lián)網(wǎng)推薦
個性化推薦:在界面上給用戶推薦相關(guān)商品
組合優(yōu)惠券:給購買過得用戶發(fā)放同時購買組合內(nèi)商品的優(yōu)惠券
捆綁銷售:將相關(guān)商品組合起來銷售
02)線下店鋪分析
商品配置分析:哪些商品可以一起購買,關(guān)聯(lián)商品如何陳列/促銷
客戶需求分析:分析顧客的購買習慣/顧客購買商品的時間/地點等
3)金融保險
經(jīng)由購物籃分析能夠設(shè)計不同的服務(wù)組合以擴大利潤;能藉由購物籃分析偵測出可能不尋常的投保組合并作預(yù)防。
4)風控領(lǐng)域
分析同時行動的賬號、尋找有效的策略組合
3、幾個概念
關(guān)聯(lián)規(guī)則三個核心概念:支持度、置信度、提升度,用最經(jīng)典的啤酒-尿不濕給大家舉例說明這三個概念,以下是幾名客戶購買的商品列表:
01)支持度
支持度 (Support):指某個商品組合出現(xiàn)的次數(shù)與總次數(shù)之間的比例。
在這個例子中,我們可以看到“牛奶”出現(xiàn)了 4 次,那么這 5 筆訂單中“牛奶”的支持度就是 4/5=0.8。
同樣“牛奶 + 面包”出現(xiàn)了 3 次,那么這 5 筆訂單中“牛奶 + 面包”的支持度就是 3/5=0.6
這樣理解起來是不是非常簡單了呢,大家可以動動手計算下 '尿不濕+啤酒'的支持度是多少
02)置信度
置信度 (Confidence):指的就是當你購買了商品 A,會有多大的概率購買商品 B
置信度(牛奶→啤酒)= 3/4=0.75,代表如果你購買了牛奶,有多大的概率會購買啤酒
置信度(啤酒→牛奶)= 3/4=0.75,代表如果你購買了啤酒,有多大的概率會購買牛奶?
置信度(啤酒→尿不濕)= 4/4=1.0,代表如果你購買了啤酒,有多大的概率會買尿不濕
由上面的例子可以看出,置信度是個條件概念,就是說在 A 發(fā)生的情況下,B 發(fā)生的概率是多少。
03)提升度
提升度 (Lift):我們在做商品推薦或者策略的時候,重點考慮的是提升度,因為提升度代表的是商品 A 的出現(xiàn),對商品 B 的出現(xiàn)概率提升的程度。
提升度 (A→B) = 置信度 (A→B)/ 支持度 (B)
所以提升度有三種可能:
提升度 (A→B)>1:代表有提升;
提升度 (A→B)=1:代表有沒有提升,也沒有下降;
提升度 (A→B)<1:代表有下降。
提升度 (啤酒→尿不濕) =置信度 (啤酒→尿不濕)/支持度 (尿不濕)=1.0/0.8=1.25
可見啤酒對尿不濕是有提升的,提升度為1.25,其實可以簡單理解為:在全集的情況下,尿不濕的概率為0.8,
而在包含啤酒這個子集中,尿不濕的概率為1,因此,子集的限定,提高了尿不濕的概率。
04)頻繁項集
頻繁項集(frequent itemset) :就是支持度大于等于最小支持度 (Min Support) 閾值的項集,
所以小于最小值支持度的項目就是非頻繁項集,而大于等于最小支持度的的項集就是頻繁項集。項集可以是單個商品,也可以是組合
Apriori算法核心思想:
某個項集是頻繁的,那么它的所有子集也是頻繁的。
{Milk, Bread, Coke} is frequent → {Milk, Coke} is frequent
如果一個項集是 非頻繁項集,那么它的所有超集也是非頻繁項集
{Battery} is infrequent → {Milk, Battery} is infrequent
如圖所示,我們發(fā)現(xiàn){A,B}這個項集是非頻繁的,那么{A,B}這個項集的超集,{A,B,C},{A,B,D}等等也都是非頻繁的,這些就都可以忽略不去計算。
運用Apriori算法的思想,我們就能去掉很多非頻繁的項集,大大簡化計算量。
這里用的是Python舉例,用的包是apriori,當然R語言等其他語言,也有對應(yīng)的算法包,原來都是一樣的。
#包安裝 pip install efficient-apriori #加載包 from efficient_apriori import apriori #
構(gòu)造數(shù)據(jù)集 data = [('牛奶','面包','尿不濕','啤酒','榴蓮'),
('可樂','面包','尿不濕','啤酒','牛仔褲'),
('牛奶','尿不濕','啤酒','雞蛋','咖啡'),
('面包','牛奶','尿不濕','啤酒','睡衣'),
('面包','牛奶','尿不濕','可樂','雞翅')] #挖掘頻繁項集和頻繁規(guī)則 itemsets, rules =
apriori(data, min_support=0.6, min_confidence=1) #頻繁項集 print(itemsets)
{1: {('啤酒',): 4, ('尿不濕',): 5, ('牛奶',): 4, ('面包',): 4}, 2: {('啤酒', '尿不濕'): 4,
('啤酒', '牛奶'): 3, ('啤酒', '面包'): 3, ('尿不濕', '牛奶'): 4, ('尿不濕', '面包'): 4,
('牛奶', '面包'): 3}, 3: {('啤酒', '尿不濕', '牛奶'): 3, ('啤酒', '尿不濕', '面包'): 3,
('尿不濕', '牛奶', '面包'): 3}}
itemsets[1] #滿足條件的一元組合 {('啤酒',): 4, ('尿不濕',): 5, ('牛奶',): 4, ('面包',): 4}
itemsets[2]#滿足條件的二元組合 {('啤酒', '尿不濕'): 4,('啤酒', '牛奶'): 3,('啤酒', '面包'):
3,('尿不濕', '牛奶'): 4,('尿不濕', '面包'): 4,('牛奶', '面包'): 3}
itemsets[3]#滿足條件的三元組合 {('啤酒', '尿不濕', '牛奶'): 3, ('啤酒', '尿不濕', '面包'):
3, ('尿不濕', '牛奶', '面包'): 3} #頻繁規(guī)則 print(rules)
[{啤酒} -> {尿不濕}, {牛奶} -> {尿不濕}, {面包} -> {尿不濕}, {啤酒, 牛奶} ->
{尿不濕}, {啤酒, 面包} -> {尿不濕}, {牛奶, 面包} -> {尿不濕}]
每個導演都有自己的偏好、比如周星馳有星女郎,張藝謀有謀女郎,且鞏俐經(jīng)常在張藝謀的電影里面出現(xiàn),因此,每個導演對演員的選擇都有一定的偏愛,我們以寧浩導演為例,分析下選擇演員的一些偏好,沒有找到公開的數(shù)據(jù)集,自己手動扒了一部分,大概如下,有些實在有點多,于是簡化下進行分析
可以看到,我們一共扒了9部電影,計算的時候,支持度的時候,總數(shù)就是9.
#把電影數(shù)據(jù)轉(zhuǎn)換成列表 data = [['葛優(yōu)','黃渤','范偉','鄧超','沈騰','張占義','
王寶強','徐崢','閆妮','馬麗'],
['黃渤','張譯','韓昊霖','杜江','葛優(yōu)','劉昊然','宋佳','王千源','任素汐','吳京'],
['郭濤','劉樺','連晉','黃渤','徐崢','優(yōu)恵','羅蘭','王迅'],
['黃渤','舒淇','王寶強','張藝興','于和偉','王迅','李勤勤','李又麟','寧浩','管虎','梁靜','
徐崢','陳德森','張磊'],
['黃渤','沈騰','湯姆·派福瑞','馬修·莫里森','徐崢','于和偉','雷佳音','劉樺','鄧飛','
蔡明凱','王戈','凱特·納爾遜','王硯偉','呲路'],
['徐崢','黃渤','余男','多布杰','王雙寶','巴多','楊新鳴','郭虹','陶虹','黃精一','趙虎','王輝'],
['黃渤','戎祥','九孔','徐崢','王雙寶','巴多','董立范','高捷','馬少驊','王迅','劉剛','
WorapojThuantanon','趙奔','李麒麟','姜志剛','王鷺','寧浩'],
['黃渤','徐崢','袁泉','周冬雨','陶慧','岳小軍','沈騰','張儷','馬蘇','劉美含','王硯輝','焦俊艷','郭濤'],
['雷佳音','陶虹','程媛媛','山崎敬一','郭濤','范偉','孫淳','劉樺','黃渤','岳小軍','傅亨','王文','楊新鳴']]
#算法應(yīng)用 itemsets, rules = apriori(data, min_support=0.5, min_confidence=1) print(itemsets)
{1: {('徐崢',): 7, ('黃渤',): 9}, 2: {('徐崢', '黃渤'): 7}} print(rules)
[{徐崢} -> {黃渤}]
通過上述分析可以看出:
在寧浩的電影中,用的最多的是黃渤和徐崢,黃渤9次,支持度100%,徐崢7次,支持度78%,('徐崢', '黃渤') 同時出現(xiàn)7次,置信度為100%,看來有徐崢,必有黃渤,真是寧浩必請的黃金搭檔。
當然,這個數(shù)據(jù)量比較小,基本上肉眼也能看出來,這里只是提供一個分析案例,鞏固下基礎(chǔ)知識,大規(guī)模的數(shù)據(jù),人眼無法直接感知的時候,算法的挖掘與發(fā)現(xiàn),就顯得特別有意義了。
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
LSTM 模型輸入長度選擇技巧:提升序列建模效能的關(guān)鍵? 在循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)家族中,長短期記憶網(wǎng)絡(luò)(LSTM)憑借其解決長序列 ...
2025-07-11CDA 數(shù)據(jù)分析師報考條件詳解與準備指南? ? 在數(shù)據(jù)驅(qū)動決策的時代浪潮下,CDA 數(shù)據(jù)分析師認證愈發(fā)受到矚目,成為眾多有志投身數(shù) ...
2025-07-11數(shù)據(jù)透視表中兩列相乘合計的實用指南? 在數(shù)據(jù)分析的日常工作中,數(shù)據(jù)透視表憑借其強大的數(shù)據(jù)匯總和分析功能,成為了 Excel 用戶 ...
2025-07-11尊敬的考生: 您好! 我們誠摯通知您,CDA Level I和 Level II考試大綱將于 2025年7月25日 實施重大更新。 此次更新旨在確保認 ...
2025-07-10BI 大數(shù)據(jù)分析師:連接數(shù)據(jù)與業(yè)務(wù)的價值轉(zhuǎn)化者? ? 在大數(shù)據(jù)與商業(yè)智能(Business Intelligence,簡稱 BI)深度融合的時代,BI ...
2025-07-10SQL 在預(yù)測分析中的應(yīng)用:從數(shù)據(jù)查詢到趨勢預(yù)判? ? 在數(shù)據(jù)驅(qū)動決策的時代,預(yù)測分析作為挖掘數(shù)據(jù)潛在價值的核心手段,正被廣泛 ...
2025-07-10數(shù)據(jù)查詢結(jié)束后:分析師的收尾工作與價值深化? ? 在數(shù)據(jù)分析的全流程中,“query end”(查詢結(jié)束)并非工作的終點,而是將數(shù) ...
2025-07-10CDA 數(shù)據(jù)分析師考試:從報考到取證的全攻略? 在數(shù)字經(jīng)濟蓬勃發(fā)展的今天,數(shù)據(jù)分析師已成為各行業(yè)爭搶的核心人才,而 CDA(Certi ...
2025-07-09【CDA干貨】單樣本趨勢性檢驗:捕捉數(shù)據(jù)背后的時間軌跡? 在數(shù)據(jù)分析的版圖中,單樣本趨勢性檢驗如同一位耐心的偵探,專注于從單 ...
2025-07-09year_month數(shù)據(jù)類型:時間維度的精準切片? ? 在數(shù)據(jù)的世界里,時間是最不可或缺的維度之一,而year_month數(shù)據(jù)類型就像一把精準 ...
2025-07-09CDA 備考干貨:Python 在數(shù)據(jù)分析中的核心應(yīng)用與實戰(zhàn)技巧? ? 在 CDA 數(shù)據(jù)分析師認證考試中,Python 作為數(shù)據(jù)處理與分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 檢驗:數(shù)據(jù)趨勢與突變分析的有力工具? ? ? 在數(shù)據(jù)分析的廣袤領(lǐng)域中,準確捕捉數(shù)據(jù)的趨勢變化以及識別 ...
2025-07-08備戰(zhàn) CDA 數(shù)據(jù)分析師考試:需要多久?如何規(guī)劃? CDA(Certified Data Analyst)數(shù)據(jù)分析師認證作為國內(nèi)權(quán)威的數(shù)據(jù)分析能力認證 ...
2025-07-08LSTM 輸出不確定的成因、影響與應(yīng)對策略? 長短期記憶網(wǎng)絡(luò)(LSTM)作為循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)的一種變體,憑借獨特的門控機制,在 ...
2025-07-07統(tǒng)計學方法在市場調(diào)研數(shù)據(jù)中的深度應(yīng)用? 市場調(diào)研是企業(yè)洞察市場動態(tài)、了解消費者需求的重要途徑,而統(tǒng)計學方法則是市場調(diào)研數(shù) ...
2025-07-07CDA數(shù)據(jù)分析師證書考試全攻略? 在數(shù)字化浪潮席卷全球的當下,數(shù)據(jù)已成為企業(yè)決策、行業(yè)發(fā)展的核心驅(qū)動力,數(shù)據(jù)分析師也因此成為 ...
2025-07-07剖析 CDA 數(shù)據(jù)分析師考試題型:解鎖高效備考與答題策略? CDA(Certified Data Analyst)數(shù)據(jù)分析師考試作為衡量數(shù)據(jù)專業(yè)能力的 ...
2025-07-04SQL Server 字符串截取轉(zhuǎn)日期:解鎖數(shù)據(jù)處理的關(guān)鍵技能? 在數(shù)據(jù)處理與分析工作中,數(shù)據(jù)格式的規(guī)范性是保證后續(xù)分析準確性的基礎(chǔ) ...
2025-07-04CDA 數(shù)據(jù)分析師視角:從數(shù)據(jù)迷霧中探尋商業(yè)真相? 在數(shù)字化浪潮席卷全球的今天,數(shù)據(jù)已成為企業(yè)決策的核心驅(qū)動力,CDA(Certifie ...
2025-07-04CDA 數(shù)據(jù)分析師:開啟數(shù)據(jù)職業(yè)發(fā)展新征程? ? 在數(shù)據(jù)成為核心生產(chǎn)要素的今天,數(shù)據(jù)分析師的職業(yè)價值愈發(fā)凸顯。CDA(Certified D ...
2025-07-03