
為了找出color、rarity、flower number、type of species對price的影響,由此,price為因變量,color、rarity、flower number、type 為自變量。
研究自變量對因變量的影響,可以選用的方法有兩種,一種是傳統(tǒng)的線性回歸模型OLS,另一種是廣義線性模型GLM(Generalized Linear Model)。傳統(tǒng)模型(OLS)要求因變量服從正態(tài)分布,廣義線性模型(GLM)則適用的范圍更廣,不要求因變量一定服從正態(tài)分布,并且方差也可以不穩(wěn)定。
第一步:考察因變量price的分布類型。
基于以上的分析,為了判斷應(yīng)該適用OLS還是使用GLM。需要先對因變量price的分布狀況進(jìn)行分析。首先,檢驗(yàn)因變量price是否服從正態(tài)分布,檢驗(yàn)的結(jié)果如下:
Table 1 Tests of Normality
|
Kolmogorov-Smirnova |
Shapiro-Wilk |
||||
|
Statistic |
df |
Sig. |
Statistic |
df |
Sig. |
Price |
.149 |
156 |
.000 |
.818 |
156 |
.000 |
a. Lilliefors Significance Correction |
上表是正態(tài)性檢驗(yàn)的結(jié)果,K-S檢驗(yàn)和S-W檢驗(yàn)的SIG.全部小于0.05.由此可以知道,因變量price不服從正態(tài)分布。因此,研究color、rarity、flower number、type of species對price的影響不能選用傳統(tǒng)線性模型(OLS)分析,必須選用GLM模型。
通過price不服從正態(tài)分布這一結(jié)論,得出必須選用GLM模型之后,還需要進(jìn)一步找出因變量price到底服從哪種分布。經(jīng)過嘗試,得出因變量price服從Gamma分布。
第二步:GLM分析
確定選用GLM模型和因變量price是服從Gamma分布的,進(jìn)行GLM分析,結(jié)果如下:
Table 2
Case Processing Summary |
||
|
N |
Percent |
Included |
156 |
100.0% |
Excluded |
0 |
0.0% |
Total |
156 |
100.0% |
上表的結(jié)果陳述了,參與分析的案例個(gè)數(shù)為156。
Table 3
Categorical Variable Information |
||||
|
N |
Percent |
||
Factor |
Color |
Green |
30 |
19.2% |
Red |
30 |
19.2% |
||
White |
29 |
18.6% |
||
Black |
30 |
19.2% |
||
Yellow |
22 |
14.1% |
||
Blue |
15 |
9.6% |
||
Total |
156 |
100.0% |
||
Rarity |
Rare |
83 |
53.2% |
|
Commom |
73 |
46.8% |
||
Total |
156 |
100.0% |
||
FlowerNumber |
Single flower |
72 |
46.2% |
|
Multiple flowers |
84 |
53.8% |
||
Total |
156 |
100.0% |
||
TypeofSpecies |
Native species |
61 |
39.1% |
|
First generation hybrids |
42 |
26.9% |
||
Complex hybrids |
53 |
34.0% |
||
Total |
156 |
100.0% |
上表的結(jié)果展現(xiàn)了4個(gè)自變量中每個(gè)類別的選擇的人數(shù)及其占比。
Table 4
Goodness of Fita |
|||
|
Value |
df |
Value/df |
Deviance |
68.838 |
146 |
.471 |
Scaled Deviance |
166.574 |
146 |
|
Pearson Chi-Square |
68.353 |
146 |
.468 |
Scaled Pearson Chi-Square |
165.400 |
146 |
|
Log Likelihoodb |
-767.832 |
|
|
Akaike's Information Criterion (AIC) |
1557.665 |
|
|
Finite Sample Corrected AIC (AICC) |
1559.498 |
|
|
Bayesian Information Criterion (BIC) |
1591.213 |
|
|
Consistent AIC (CAIC) |
1602.213 |
|
|
Dependent Variable: Price Model: (Intercept), Color, Rarity, FlowerNumber, TypeofSpecies |
|||
a. Information criteria are in small-is-better form. |
|||
b. The full log likelihood function is displayed and used in computing information criteria. |
上表是GLM模型的擬合優(yōu)度分析結(jié)果,擬合優(yōu)度分析是用于反映模型總體上對數(shù)據(jù)信息的表達(dá)是否充分。Deviance擬合優(yōu)度檢驗(yàn)法和Pearson Chi-Square擬合優(yōu)度檢驗(yàn)法計(jì)算出的顯著性水平分別為0.471和0.468,均大于0.05,由此可以知道,模型的擬合情況良好,即模型能夠比較真實(shí)可靠地反映出數(shù)據(jù)。
來CDA學(xué)業(yè)務(wù)數(shù)據(jù)分析師,SPSS理論結(jié)合實(shí)戰(zhàn)進(jìn)行項(xiàng)目數(shù)據(jù)分析,助你成為從事數(shù)據(jù)采集、清洗、處理、分析并能制作業(yè)務(wù)報(bào)告、提供決策的新型數(shù)據(jù)分析人才,點(diǎn)擊了解課程詳情!
數(shù)據(jù)分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
SQL Server 中 CONVERT 函數(shù)的日期轉(zhuǎn)換:從基礎(chǔ)用法到實(shí)戰(zhàn)優(yōu)化 在 SQL Server 的數(shù)據(jù)處理中,日期格式轉(zhuǎn)換是高頻需求 —— 無論 ...
2025-09-18MySQL 大表拆分與關(guān)聯(lián)查詢效率:打破 “拆分必慢” 的認(rèn)知誤區(qū) 在 MySQL 數(shù)據(jù)庫管理中,“大表” 始終是性能優(yōu)化繞不開的話題。 ...
2025-09-18CDA 數(shù)據(jù)分析師:表結(jié)構(gòu)數(shù)據(jù) “獲取 - 加工 - 使用” 全流程的賦能者 表結(jié)構(gòu)數(shù)據(jù)(如數(shù)據(jù)庫表、Excel 表、CSV 文件)是企業(yè)數(shù)字 ...
2025-09-18DSGE 模型中的 Et:理性預(yù)期算子的內(nèi)涵、作用與應(yīng)用解析 動態(tài)隨機(jī)一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明確:TIF 中的地名有哪兩種存在形式? 在開始提取前,需先判斷 TIF 文件的類型 —— ...
2025-09-17CDA 數(shù)據(jù)分析師:解鎖表結(jié)構(gòu)數(shù)據(jù)特征價(jià)值的專業(yè)核心 表結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 規(guī)范存儲的結(jié)構(gòu)化數(shù)據(jù),如數(shù)據(jù)庫表、Excel 表、 ...
2025-09-17Excel 導(dǎo)入數(shù)據(jù)含缺失值?詳解 dropna 函數(shù)的功能與實(shí)戰(zhàn)應(yīng)用 在用 Python(如 pandas 庫)處理 Excel 數(shù)據(jù)時(shí),“缺失值” 是高頻 ...
2025-09-16深入解析卡方檢驗(yàn)與 t 檢驗(yàn):差異、適用場景與實(shí)踐應(yīng)用 在數(shù)據(jù)分析與統(tǒng)計(jì)學(xué)領(lǐng)域,假設(shè)檢驗(yàn)是驗(yàn)證研究假設(shè)、判斷數(shù)據(jù)差異是否 “ ...
2025-09-16CDA 數(shù)據(jù)分析師:掌控表格結(jié)構(gòu)數(shù)據(jù)全功能周期的專業(yè)操盤手 表格結(jié)構(gòu)數(shù)據(jù)(以 “行 - 列” 存儲的結(jié)構(gòu)化數(shù)據(jù),如 Excel 表、數(shù)據(jù) ...
2025-09-16MySQL 執(zhí)行計(jì)劃中 rows 數(shù)量的準(zhǔn)確性解析:原理、影響因素與優(yōu)化 在 MySQL SQL 調(diào)優(yōu)中,EXPLAIN執(zhí)行計(jì)劃是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 對象的 text 與 content:區(qū)別、場景與實(shí)踐指南 在 Python 進(jìn)行 HTTP 網(wǎng)絡(luò)請求開發(fā)時(shí)(如使用requests ...
2025-09-15CDA 數(shù)據(jù)分析師:激活表格結(jié)構(gòu)數(shù)據(jù)價(jià)值的核心操盤手 表格結(jié)構(gòu)數(shù)據(jù)(如 Excel 表格、數(shù)據(jù)庫表)是企業(yè)最基礎(chǔ)、最核心的數(shù)據(jù)形態(tài) ...
2025-09-15Python HTTP 請求工具對比:urllib.request 與 requests 的核心差異與選擇指南 在 Python 處理 HTTP 請求(如接口調(diào)用、數(shù)據(jù)爬取 ...
2025-09-12解決 pd.read_csv 讀取長浮點(diǎn)數(shù)據(jù)的科學(xué)計(jì)數(shù)法問題 為幫助 Python 數(shù)據(jù)從業(yè)者解決pd.read_csv讀取長浮點(diǎn)數(shù)據(jù)時(shí)的科學(xué)計(jì)數(shù)法問題 ...
2025-09-12CDA 數(shù)據(jù)分析師:業(yè)務(wù)數(shù)據(jù)分析步驟的落地者與價(jià)值優(yōu)化者 業(yè)務(wù)數(shù)據(jù)分析是企業(yè)解決日常運(yùn)營問題、提升執(zhí)行效率的核心手段,其價(jià)值 ...
2025-09-12用 SQL 驗(yàn)證業(yè)務(wù)邏輯:從規(guī)則拆解到數(shù)據(jù)把關(guān)的實(shí)戰(zhàn)指南 在業(yè)務(wù)系統(tǒng)落地過程中,“業(yè)務(wù)邏輯” 是連接 “需求設(shè)計(jì)” 與 “用戶體驗(yàn) ...
2025-09-11塔吉特百貨孕婦營銷案例:數(shù)據(jù)驅(qū)動下的精準(zhǔn)零售革命與啟示 在零售行業(yè) “流量紅利見頂” 的當(dāng)下,精準(zhǔn)營銷成為企業(yè)突圍的核心方 ...
2025-09-11CDA 數(shù)據(jù)分析師與戰(zhàn)略 / 業(yè)務(wù)數(shù)據(jù)分析:概念辨析與協(xié)同價(jià)值 在數(shù)據(jù)驅(qū)動決策的體系中,“戰(zhàn)略數(shù)據(jù)分析”“業(yè)務(wù)數(shù)據(jù)分析” 是企業(yè) ...
2025-09-11Excel 數(shù)據(jù)聚類分析:從操作實(shí)踐到業(yè)務(wù)價(jià)值挖掘 在數(shù)據(jù)分析場景中,聚類分析作為 “無監(jiān)督分組” 的核心工具,能從雜亂數(shù)據(jù)中挖 ...
2025-09-10統(tǒng)計(jì)模型的核心目的:從數(shù)據(jù)解讀到?jīng)Q策支撐的價(jià)值導(dǎo)向 統(tǒng)計(jì)模型作為數(shù)據(jù)分析的核心工具,并非簡單的 “公式堆砌”,而是圍繞特定 ...
2025-09-10